import openai
import streamlit as st
import os
from langchain.document_loaders import PyPDFLoader
from langchain import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain
from langchain.chat_models import ChatOpenAI
openai.api_key = os.environ["OPENAI_API_KEY"]
@st.cache_data
def setup_documents(pdf_file_path,chunk_size,chunk_overlap):
loader = PyPDFLoader(pdf_file_path)
docs_raw = loader.load()
docs_raw_text = [doc.page_content for doc in docs_raw]
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,
chunk_overlap=chunk_overlap)
docs = text_splitter.create_documents(docs_raw_text)
return docs
def custom_summary(docs, llm, custom_prompt, chain_type, num_summaries):
custom_prompt = custom_prompt + """:\n {text}"""
COMBINE_PROMPT = PromptTemplate(template=custom_prompt, input_variables = ["text"])
MAP_PROMPT = PromptTemplate(template="Summarize:\n{text}", input_variables=["text"])
if chain_type == "map_reduce":
chain = load_summarize_chain(llm,chain_type=chain_type,
map_prompt=MAP_PROMPT,
combine_prompt=COMBINE_PROMPT)
else:
chain = load_summarize_chain(llm,chain_type=chain_type)
summaries = []
for i in range(num_summaries):
summary_output = chain({"input_documents": docs}, return_only_outputs=True)["output_text"]
summaries.append(summary_output)
return summaries
@st.cache_data
def color_chunks(text: str, chunk_size: int, overlap_size: int) -> str:
overlap_color = "#808080"
chunk_colors = ["#a8d08d", "#c6dbef", "#e6550d", "#fd8d3c", "#fdae6b", "#fdd0a2"] # Different shades of green for chunks
colored_text = ""
overlap = ""
color_index = 0
for i in range(0, len(text), chunk_size-overlap_size):
chunk = text[i:i+chunk_size]
if overlap:
colored_text += f'{overlap}'
chunk = chunk[len(overlap):]
colored_text += f'{chunk}'
color_index = (color_index + 1) % len(chunk_colors)
overlap = text[i+chunk_size-overlap_size:i+chunk_size]
return colored_text
def main():
st.set_page_config(layout="wide")
st.title("Custom Summarization App")
llm = st.sidebar.selectbox("LLM",["ChatGPT", "GPT4", "Other (open source in the future)"])
chain_type = st.sidebar.selectbox("Chain Type", ["map_reduce", "stuff", "refine"])
chunk_size = st.sidebar.slider("Chunk Size", min_value=20, max_value = 10000,
step=10, value=2000)
chunk_overlap = st.sidebar.slider("Chunk Overlap", min_value=5, max_value = 5000,
step=10, value=200)
if st.sidebar.checkbox("Debug chunk size"):
st.header("Interactive Text Chunk Visualization")
text_input = st.text_area("Input Text", "This is a test text to showcase the functionality of the interactive text chunk visualizer.")
# Set the minimum to 1, the maximum to 5000 and default to 100
html_code = color_chunks(text_input, chunk_size, chunk_overlap)
st.markdown(html_code, unsafe_allow_html=True)
else:
user_prompt = st.text_input("Enter the custom summary prompt")
pdf_file_path = st.text_input("Enther the pdf file path")
temperature = st.sidebar.number_input("Set the ChatGPT Temperature",
min_value = 0.0,
max_value=1.0,
step=0.1,
value=0.5)
num_summaries = st.sidebar.number_input("Number of summaries",
min_value = 1,
max_value = 10,
step = 1,
value=1)
if pdf_file_path != "":
docs = setup_documents(pdf_file_path, chunk_size, chunk_overlap)
st.write("PDF loaded successfully")
if llm=="ChatGPT":
llm = ChatOpenAI(temperature=temperature)
elif llm=="GPT4":
llm = ChatOpenAI(model_name="gpt-4",temperature=temperature)
else:
st.write("Using ChatGPT while open source models are not implemented!")
llm = ChatOpenAI(temperature=temperature)
if st.button("Summarize"):
result = custom_summary(docs, llm, user_prompt, chain_type, num_summaries)
st.write("Summary:")
for summary in result:
st.write(summary)
if __name__=="__main__":
main()