File size: 10,100 Bytes
1d47317
 
 
 
 
 
 
 
d1b3545
 
1d47317
d1b3545
 
 
 
 
1d47317
d1b3545
 
 
1d47317
d1b3545
1d47317
d1b3545
 
 
 
 
 
 
 
 
 
 
 
 
1d47317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1b3545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d47317
 
 
 
 
 
 
 
d1b3545
1d47317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1b3545
1d47317
d1b3545
 
 
 
 
 
1d47317
d1b3545
 
 
1d47317
d1b3545
1d47317
 
 
 
d1b3545
1d47317
 
 
 
d1b3545
1d47317
 
 
 
d1b3545
1d47317
 
d1b3545
 
 
1d47317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1b3545
1d47317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import re
import cv2
import numpy as np
from paddleocr import PaddleOCR
from PIL import Image
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.pyplot as plt
import onnxruntime
import gradio as gr

# initialize the OCR
ocr = PaddleOCR(lang='sl',
                enable_mkldnn=True,
                cls=False,
                show_log= False)

# initialize the models 
model_deskew = onnxruntime.InferenceSession("/content/CNN_deskew_v0.0.2.onnx")
model_denoise = onnxruntime.InferenceSession("/content/autoencoder_denoise_v0.0.2.onnx")

##### All Functions #####

def preprocess_image(image):
    '''
    Function: preprocess image to make it lighter to work on 
    Input: resized image
    Output: image
    '''
    image = np.array(image)   
    scale = 1.494
    width = int(image.shape[1] / scale)
    height = int(image.shape[0] / scale)
    dim = (width, height)
    image = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)  
    return image


def deskew(image, model):
    '''
    Function: deskew an image
    Input: takes an image as an array
    Output: deskewed image
    '''
    # map the model classes to the actual degree of skew
    map = { 0: '-1', 1: '-10', 2: '-11', 3: '-12', 4: '-13',
            5: '-14',6: '-15', 7: '-2',  8: '-3',  9: '-4',
            10: '-5',11: '-6',12: '-7', 13: '-8', 14: '-9',
            15: '0', 16: '1', 17: '10', 18: '11', 19: '12',
            20: '13',21: '14',22: '15', 23: '180',24: '2',
            25: '270',26: '3',27: '4',  28: '5',  29: '6',
            30: '7',  31: '8',32: '9',  33: '90'}

    image_d = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    width = int(image_d.shape[1] * 0.2)
    height = int(image_d.shape[0] * 0.2)
    dim = (width, height)
    # resize image
    res = cv2.resize(image_d, dim, interpolation = cv2.INTER_AREA)  
    resized = cv2.resize(res, (200, 200))
    # add two dimensions to feed to the model 
    resized = resized.astype('float32').reshape(1, 200, 200 ,1)
    # normalize
    resized = resized/255  
    # predictions
    predictions = model.run(None, {'conv2d_input': resized})
    # best prediction
    pred = predictions[0].argmax()
    # angle of skew
    angle = int(map[pred])
    skew_confidence = predictions[0][0][pred] * 100
    # deskew original image
    if angle == 90:
        deskewed_image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
        return deskewed_image, angle, skew_confidence
    if angle == 270:
        deskewed_image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
        return deskewed_image, angle, skew_confidence
    
    (h, w) = image.shape[:2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, -angle, 1.0)
    deskewed_image = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC,
                            borderMode=cv2.BORDER_REPLICATE)
    return deskewed_image, angle, skew_confidence


def prepare_image_to_autoencoder(image):
    '''
    Function: prepare the image to be passed to the autoencoder.
    Input: image (_type_): deskewed image
    Output: resized image to be passed to the autoencoder
    '''
    height, width = image.shape[:2]
    target_height = 600 
    target_width = 600
    image = image[int(height/3.6): int(height/1.87), int(width/3.67): int(width/1.575)]
    # reshape image to fixed size 
    image = cv2.resize(image, (target_width, target_height))
    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
     # normalize images
    image = image / 255.0 
    # reshape to pass image to autoencoder
    image = image.reshape(target_height, target_width, 1) 
    return image


def autoencode_ONNX(image, model):
    '''
    Function: remove noise from image
    Input: image and autoencoder model
    Output: image
    '''
    image = image.astype(np.float32).reshape(1, 600, 600, 1)
    image = model.run(None, {'input_2': image})
    image = image[0]
    image = image.squeeze()
    image = image * 255
    image = image.astype('uint8')
    return image

def extract_detected_entries_pdl(image):
    """
    Extracts text, scores, and boundary boxes from an image using OCR and returns a DataFrame.

    This function takes an input image, applies OCR to detect text in the image, and then extracts
    the detected text, confidence scores, and boundary boxes for each text entry. The extracted
    information is returned in a DataFrame with columns "Text", "Score", and "Boundary Box".

    Parameters
    ----------
    image : numpy.ndarray
        The input image to be processed.

    Returns
    -------
    pandas.DataFrame
        A DataFrame containing the extracted text, confidence scores, and boundary boxes
        for each detected text entry. The DataFrame has the following columns:
        - "Text": The detected text.
        - "Score": The confidence score for the detected text.
        - "Boundary Box": The coordinates of the boundary box for the detected text.
    """
    # run the OCR
    result = ocr.ocr(image)
    # creates the Pandas dataframe 
    txt = []
    scores = []
    boxes = []
    for r in result[0]:
      txt.append(cleanString_basic(r[-1][0]))
      scores.append(r[-1][1])
      boxes.append(r[0])
    
    return pd.DataFrame(np.transpose([txt, scores, boxes]),columns = ["Text","Score", "Boundary Box"])

def cleanString_basic(word):
  word = word.replace("$", "s")
  return word

def clean_string_start(string: 'str'):

    names_flags = "√"
    chars_to_remove = ['!', "'", '[', ']', '*', '|', '.', ':', '\\', '/']
    if string.startswith(tuple(chars_to_remove)):
        names_flags = string[0]
        string = string[1:]
    return string, names_flags

def clean_string_end(string: 'str'):

    names_flags = "√"
    chars_to_remove = ['!', "'", '[', ']', '*', '|', '.', ':', '\\', '/']
    if string.endswith(tuple(chars_to_remove)):
        names_flags = string[-1]
        string = string[:-1]
    return string, names_flags

def clean_dates(date: 'str'):
    '''
    Function: cleans the fields "datum smrti" and returns the char removed.
    Input: date (string format)
    Output: cleaned frame
    '''

    date_flags = "Y"
    # finds special characters in the string
    special_char = re.findall(r'[a-zA-Z!\[\|]', date)
    if len(special_char) > 0:
        date_flags = special_char
    # remove special characters in the string
    string = re.sub(r'[a-zA-Z!\[\|]', '', date)
    return string, date_flags


##### Main Function #####

def pdf_extract_gr(image):
  extractimg = preprocess_image(image)
  #extractimg = np.array(image)
  # deskew the image 
  deskewed_image, angle, skew_confidence = deskew(extractimg, model_deskew)
  # prepare the image for the autoencoder
  cleanimg = prepare_image_to_autoencoder(deskewed_image)
  # clean the image
  img = autoencode_ONNX(cleanimg, model_denoise)
  # extract the entries from the image
  df = extract_detected_entries_pdl(img)
  # first name 
  firstnamerow = df.iloc[0]
  firstname = firstnamerow[0]
  firstnameconfidence = round(float(firstnamerow[1]) * 100,3)
  firstnameconfidence = f"{firstnameconfidence}%"
  # surname 
  surnamerow = df.iloc[1]
  surname = surnamerow[0]
  surnameconfidence = round(float(surnamerow[1]) * 100,3)
  surnameconfidence = f"{surnameconfidence}%"
  # death date condifence
  dodrow = df.iloc[2]
  dodname = dodrow[0]
  dodconfidence = round(float(dodrow[1]) * 100,3)
  dodconfidence = f"{dodconfidence}%"
  # return all the results 
  return df, deskewed_image, angle, skew_confidence, img, firstname, firstnameconfidence, surname, surnameconfidence, dodname, dodconfidence


##### Gradio Style #####

css = """
.run_container {
  display: flex;
  flex-direction: column;
  align-items: center;
  gap: 10px;
}
.run_btn {
  margin: auto;
  width: 50%;
  display: flex;
}
.upload_cell {
  margin: auto;
  display: flex;
}
.results_container {
  display: flex;
  justify-content: space-evenly;
}
.results_cell {
}
"""

##### Gradio Blocks #####

with gr.Blocks(css = css) as demo:
  gr.Markdown("""
      # Death Certificate Extraction
      """, elem_classes = "h1")
  gr.Markdown("Upload a PDF, extract data")
  with gr.Box(elem_classes = "run_container"):
    # ExtractInput = gr.File(label = "Death Certificate", elem_classes="upload_cell")
    ExtractButton = gr.Button(label = "Extract", elem_classes="run_btn")
  with gr.Row(elem_id = "hide"):
    with gr.Column():
      ExtractInput = gr.Image()
    with gr.Column():
      # ExtractResult = gr.Image(label = "result")
      with gr.Row(elem_classes = "results_container"):
        FirstNameBox = gr.Textbox(label = "First Name", elem_classes = "results_cell")
        FirstNameConfidenceBox = gr.Textbox(label = "First Name Confidence", elem_classes = "results_cell")
      with gr.Row(elem_classes = "results_container"):
        SurnameNameBox = gr.Textbox(label = "Surname", elem_classes = "results_cell")
        SurnameNameConfidenceBox = gr.Textbox(label = "Surname Confidence", elem_classes = "results_cell")
      with gr.Row(elem_classes = "results_container"):
        DODBox = gr.Textbox(label = "Date of Death", elem_classes = "results_cell")
        DODConfidenceBox = gr.Textbox(label = "Date of Death Confidence", elem_classes = "results_cell")

      with gr.Accordion("Full Results", open = False):
        ExtractDF = gr.Dataframe(label = "Results")

      with gr.Accordion("Clean Image", open = False):
        CleanOutput = gr.Image()

      with gr.Accordion("Deskew", open = False):
        DeskewOutput = gr.Image()
        with gr.Column():
          DeskewAngle = gr.Number(label = "Angle")
        with gr.Column():
          DeskewConfidence = gr.Number(label = "Confidence")

  ExtractButton.click(fn=pdf_extract_gr, 
                      inputs = ExtractInput, 
                      outputs = [ExtractDF, DeskewOutput, DeskewAngle, 
                                 DeskewConfidence, CleanOutput, FirstNameBox, 
                                 FirstNameConfidenceBox, SurnameNameBox, 
                                 SurnameNameConfidenceBox, DODBox, DODConfidenceBox])

demo.launch(show_api=True, share=False, debug=True)