Spaces:
Build error
Build error
import cv2 | |
import torch | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from super_image import ImageLoader, EdsrModel, MsrnModel, MdsrModel, AwsrnModel, A2nModel, CarnModel, PanModel, \ | |
HanModel, DrlnModel, RcanModel | |
title = "super-image" | |
description = "State of the Art Image Super-Resolution Models." | |
article = "<p style='text-align: center'><a href='https://github.com/eugenesiow/super-image'>Github Repo</a>" \ | |
"| <a href='https://eugenesiow.github.io/super-image/'>Documentation</a> " \ | |
"| <a href='https://github.com/eugenesiow/super-image#scale-x2'>Models</a></p>" | |
def get_model(model_name, scale): | |
if model_name == 'EDSR': | |
model = EdsrModel.from_pretrained('eugenesiow/edsr', scale=scale) | |
elif model_name == 'MSRN': | |
model = MsrnModel.from_pretrained('eugenesiow/msrn', scale=scale) | |
elif model_name == 'MDSR': | |
model = MdsrModel.from_pretrained('eugenesiow/mdsr', scale=scale) | |
elif model_name == 'AWSRN-BAM': | |
model = AwsrnModel.from_pretrained('eugenesiow/awsrn-bam', scale=scale) | |
elif model_name == 'A2N': | |
model = A2nModel.from_pretrained('eugenesiow/a2n', scale=scale) | |
elif model_name == 'CARN': | |
model = CarnModel.from_pretrained('eugenesiow/carn', scale=scale) | |
elif model_name == 'PAN': | |
model = PanModel.from_pretrained('eugenesiow/pan', scale=scale) | |
elif model_name == 'HAN': | |
model = HanModel.from_pretrained('eugenesiow/han', scale=scale) | |
elif model_name == 'DRLN': | |
model = DrlnModel.from_pretrained('eugenesiow/drln', scale=scale) | |
elif model_name == 'RCAN': | |
model = RcanModel.from_pretrained('eugenesiow/rcan', scale=scale) | |
else: | |
model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=scale) | |
return model | |
def inference(img, scale_str, model_name): | |
max_res = 1024 | |
scale = int(scale_str.replace('x', '')) | |
width, height = img.size | |
print(width, height) | |
if width > max_res or height > max_res: | |
img = img.thumbnail((max_res, max_res), Image.ANTIALIAS) | |
model = get_model(model_name, scale) | |
try: | |
inputs = ImageLoader.load_image(img) | |
preds = model(inputs) | |
preds = preds.data.cpu().numpy() | |
pred = preds[0].transpose((1, 2, 0)) * 255.0 | |
return Image.fromarray(pred.astype('uint8'), 'RGB') | |
except Exception as e: | |
print(e) | |
return None | |
torch.hub.download_url_to_file('http://people.rennes.inria.fr/Aline.Roumy/results/images_SR_BMVC12/input_groundtruth/baby_mini_d3_gaussian.bmp', | |
'baby.bmp') | |
torch.hub.download_url_to_file('http://people.rennes.inria.fr/Aline.Roumy/results/images_SR_BMVC12/input_groundtruth/woman_mini_d3_gaussian.bmp', | |
'woman.bmp') | |
torch.hub.download_url_to_file('http://people.rennes.inria.fr/Aline.Roumy/results/images_SR_BMVC12/input_groundtruth/bird_mini_d4_gaussian.bmp', | |
'bird.bmp') | |
# models = ['EDSR-base', 'DRLN', 'EDSR', 'MDSR', 'A2N', 'PAN', 'AWSRN-BAM', 'MSRN'] | |
models = ['EDSR-base', 'A2N', 'PAN', 'AWSRN-BAM', 'MSRN'] | |
scales = [2, 3, 4] | |
for model_name in models: | |
for scale in scales: | |
get_model(model_name, scale) | |
gr.Interface( | |
inference, | |
[ | |
gr.inputs.Image(type="pil", label="Input"), | |
gr.inputs.Radio(["x2", "x3", "x4"], label='scale'), | |
gr.inputs.Dropdown(choices=models, | |
label='Model') | |
], | |
gr.outputs.Image(type="pil", label="Output"), | |
title=title, | |
description=description, | |
article=article, | |
examples=[ | |
['baby.bmp', 'x2', 'EDSR-base'], | |
['woman.bmp', 'x3', 'MSRN'], | |
['bird.bmp', 'x4', 'PAN'] | |
], | |
enable_queue=True, | |
allow_flagging=False, | |
).launch(debug=False) | |