import os import logging import time import datetime import gradio as gr import datasets from huggingface_hub import snapshot_download from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import plotly.graph_objects as go from src.display.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, FAQ_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, EVAL_COLS, AutoEvalColumn, fields, ) from src.envs import ( EVAL_REQUESTS_PATH, AGGREGATED_REPO, QUEUE_REPO, REPO_ID, HF_HOME, ) from src.populate import get_evaluation_queue_df, get_leaderboard_df from src.tools.plots import create_plot_df, create_scores_df # Configure logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") # Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set. # This controls whether a full initialization should be performed. DO_FULL_INIT = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True" LAST_UPDATE_LEADERBOARD = datetime.datetime.now() def time_diff_wrapper(func): def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) end_time = time.time() diff = end_time - start_time logging.info(f"Time taken for {func.__name__}: {diff} seconds") return result return wrapper @time_diff_wrapper def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5): """Download dataset with exponential backoff retries.""" attempt = 0 while attempt < max_attempts: try: logging.info(f"Downloading {repo_id} to {local_dir}") snapshot_download( repo_id=repo_id, local_dir=local_dir, repo_type=repo_type, tqdm_class=None, etag_timeout=30, max_workers=8, ) logging.info("Download successful") return except Exception as e: wait_time = backoff_factor**attempt logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s") time.sleep(wait_time) attempt += 1 raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts") def get_latest_data_leaderboard(leaderboard_initial_df = None): current_time = datetime.datetime.now() global LAST_UPDATE_LEADERBOARD if current_time - LAST_UPDATE_LEADERBOARD < datetime.timedelta(minutes=10) and leaderboard_initial_df is not None: return leaderboard_initial_df LAST_UPDATE_LEADERBOARD = current_time leaderboard_dataset = datasets.load_dataset( AGGREGATED_REPO, "default", split="train", cache_dir=HF_HOME, download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset verification_mode="no_checks" ) leaderboard_df = get_leaderboard_df( leaderboard_dataset=leaderboard_dataset, cols=COLS, benchmark_cols=BENCHMARK_COLS, ) return leaderboard_df def get_latest_data_queue(): eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) return eval_queue_dfs def init_space(): """Initializes the application space, loading only necessary data.""" if DO_FULL_INIT: # These downloads only occur on full initialization download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH) # Always redownload the leaderboard DataFrame leaderboard_df = get_latest_data_leaderboard() # Evaluation queue DataFrame retrieval is independent of initialization detail level eval_queue_dfs = get_latest_data_queue() return leaderboard_df, eval_queue_dfs # Initialize the space leaderboard_df, eval_queue_dfs = init_space() finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs # Data processing for plots now only on demand in the respective Gradio tab def load_and_create_plots(): plot_df = create_plot_df(create_scores_df(leaderboard_df)) return plot_df def create_metric_plot_obj(df, metrics, title="Metrics Over Time"): """Create plot with Open-Orca models highlighted in purple""" fig = go.Figure() # Add traces for each metric for metric in metrics: # Get the model names for this metric model_names = df[f"{metric}_model"].tolist() # Create masks for Open-Orca and non-Open-Orca models is_open_orca = ["Open-Orca" in str(model) for model in model_names] # Add trace for non-Open-Orca models fig.add_trace( go.Scatter( x=df[df.index[~is_open_orca]], y=df[metric][~is_open_orca], name=metric, mode='lines+markers', line=dict(width=2), marker=dict(size=8), hovertemplate=( "Date: %{x}
" "Score: %{y:.2f}
" "Model: %{text}
" ), text=[model_names[i] for i, flag in enumerate(is_open_orca) if not flag] ) ) # Add trace for Open-Orca models with purple color and larger markers if any(is_open_orca): fig.add_trace( go.Scatter( x=df[df.index[is_open_orca]], y=df[metric][is_open_orca], name=f"{metric} (Open-Orca)", mode='lines+markers', line=dict(color='purple', width=3), marker=dict( color='purple', size=12, symbol='star' ), hovertemplate=( "Date: %{x}
" "Score: %{y:.2f}
" "Model: %{text}
" ), text=[model_names[i] for i, flag in enumerate(is_open_orca) if flag] ) ) # Update layout fig.update_layout( title=title, xaxis_title="Date", yaxis_title="Score", hovermode='x unified', showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ) ) return fig def init_leaderboard(dataframe): return Leaderboard( value = dataframe, datatype=[c.type for c in fields(AutoEvalColumn)], select_columns=SelectColumns( default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy], label="Select Columns to Display:", ), search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.fullname.name, AutoEvalColumn.license.name], hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], filter_columns=[ ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), ColumnFilter( AutoEvalColumn.params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)", ), ColumnFilter( AutoEvalColumn.still_on_hub.name, type="boolean", label="Private or deleted", default=True ), ColumnFilter( AutoEvalColumn.merged.name, type="boolean", label="Contains a merge/moerge", default=True ), ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False), ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True), ], bool_checkboxgroup_label="Hide models", interactive=False, ) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): leaderboard = init_leaderboard(leaderboard_df) with gr.TabItem("📈 Metrics through time", elem_id="llm-benchmark-tab-table", id=2): with gr.Row(): with gr.Column(): plot_df = load_and_create_plots() chart = create_metric_plot_obj( plot_df, [AutoEvalColumn.average.name], title="Average of Top Scores and Human Baseline Over Time (from last update)", ) gr.Plot(value=chart, min_width=500) with gr.Column(): plot_df = load_and_create_plots() chart = create_metric_plot_obj( plot_df, BENCHMARK_COLS, title="Top Scores and Human Baseline Over Time (from last update)", ) gr.Plot(value=chart, min_width=500) with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.TabItem("❗FAQ", elem_id="llm-benchmark-tab-table", id=4): gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True, ) demo.load(fn=get_latest_data_leaderboard, inputs=[leaderboard], outputs=[leaderboard]) demo.queue(default_concurrency_limit=40).launch()