Spaces:
Runtime error
Runtime error
File size: 4,115 Bytes
bd61da5 3894141 9f4fb0e 233c774 67a27f9 9f4fb0e 233c774 ff3389c 076a158 bd61da5 67a27f9 3894141 9f4fb0e 3894141 9f4fb0e bd61da5 0f8c139 bd61da5 3894141 5e605db 3894141 6b329ae ff377ee 6b329ae ff377ee a6ac941 ff377ee 7db6225 ff377ee f8d5291 ff377ee f8d5291 ff377ee 233c774 3894141 ff3389c 233c774 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import streamlit as st
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSequenceClassification
# MODEL TO CALL
generator_name = "Alirani/synopsis_generator"
tokenizer_gen = AutoTokenizer.from_pretrained(generator_name)
model_gen = TFAutoModelForCausalLM.from_pretrained(generator_name)
def generate_synopsis(model, tokenizer, title):
input_ids = tokenizer(title, return_tensors="tf")
output = model.generate(input_ids['input_ids'], max_length=150, num_beams=5, no_repeat_ngram_size=2, top_k=50, attention_mask=input_ids['attention_mask'])
synopsis = tokenizer.decode(output[0], skip_special_tokens=True)
processed_synopsis = "".join(synopsis.split('|')[2].rpartition('.')[:2]).strip()
return processed_synopsis
classifier_name = "Alirani/synopsis_classifier"
tokenizer_clf = AutoTokenizer.from_pretrained(classifier_name)
model_clf = TFAutoModelForSequenceClassification.from_pretrained(classifier_name)
def generate_classification(model, tokenizer, title, overview):
tokens = tokenizer(f"{title} | {overview}", padding=True, truncation=True, return_tensors="tf")
output = model(**tokens).logits
predicted_class_id = int(tf.math.argmax(output, axis=-1)[0])
return model.config.id2label[predicted_class_id]
favicon = "https://i.ibb.co/JRdhFZg/favicon-32x32.png"
st.set_page_config(page_title="Synopsis Generator", page_icon = favicon, layout = 'wide', initial_sidebar_state = 'auto')
st.title('Demo of a Synopsis Classifier & Generator')
functionality = st.radio("Choose the function to use",
["Classification", "Generation"],
captions = ['Classify title & synopsis into genres', 'Generate synopsis from title & genres'],
index = None)
if functionality == "Classification" :
# CLASSIFY A SYNOPSIS
st.header('Classify a story')
prod_title = st.text_input('Type a title to classify a synopsis')
prod_synopsis = st.text_area('Type a synopsis to classify it')
button_classify = st.button('Get genre')
if button_classify:
if (len(prod_title.split(' ')) > 0) & len(prod_synopsis.split(' ')) > 0:
classified_genre = generate_classification(model_clf, tokenizer_clf, prod_title, prod_synopsis)
st.write('The genre of the title & synopsis is : ', classified_genre)
else:
st.write('Write a title & synopsis for the classifier to work !')
elif functionality == "Generation":
# GENERATE A SYNOPSIS
st.header('Generate a story')
prod_title = st.text_input('Type a title to generate a synopsis')
option_genres = st.selectbox(
'Select a genre to tailor your synopsis',
('Family', 'Romance', 'Comedy', 'Action', 'Documentary', 'Adventure', 'Drama', 'Mystery', 'Crime', 'Thriller', 'Science Fiction', 'History', 'Music', 'Western', 'Fantasy', 'TV Movie', 'Horror', 'Animation', 'Reality'),
index=None,
placeholder="Select genres..."
)
complete_synopsis = st.toggle('Synopsis completion')
if complete_synopsis:
pre_synopsis = st.text_input('Type the beginning of your synopsis')
button_synopsis = st.button('Get synopsis')
if button_synopsis:
if (len(prod_title.split(' ')) > 0) & (len(option_genres) > 0) :
gen_synopsis = generate_synopsis(model_gen, tokenizer_gen, f"{prod_title} | {option_genres} | {pre_synopsis}")
st.write('Generated synopsis : ', gen_synopsis)
else:
st.write('Write a title & select a genre for the generator to work !')
else:
button_synopsis = st.button('Get synopsis')
if button_synopsis:
if len(prod_title.split(' ')) > 0:
gen_synopsis = generate_synopsis(model_gen, tokenizer_gen, f"{prod_title} | {option_genres} | ")
st.write('Generated synopsis : ', gen_synopsis)
else:
st.write('Write a title for the generator to work !')
else:
st.write("Select a functionality ! 😊")
|