Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoTokenizer, TFAutoModelForCausalLM | |
# MODEL TO CALL | |
model_name = "Alirani/distilgpt2-finetuned-synopsis" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = TFAutoModelForCausalLM.from_pretrained(model_name) | |
def generate_synopsis(model, tokenizer, title): | |
input_ids = tokenizer(title, return_tensors="tf") | |
output = model.generate(input_ids['input_ids'], max_length=150, num_beams=5, no_repeat_ngram_size=2, top_k=50, attention_mask=input_ids['attention_mask']) | |
synopsis = tokenizer.decode(output[0], skip_special_tokens=True) | |
return synopsis | |
favicon = "https://i.ibb.co/JRdhFZg/favicon-32x32.png" | |
st.set_page_config(page_title="LoreFinder-demo", page_icon = favicon, layout = 'wide', initial_sidebar_state = 'auto') | |
st.title('Demo LoreFinder') | |
st.header('Generate a story') | |
prod_title = st.text_input('Type a title to generate a synopsis') | |
button_synopsis = st.button('Get synopsis') | |
if button_synopsis: | |
if len(prod_title.split(' ')) > 0: | |
gen_synopsis = generate_synopsis(model, tokenizer, f"{prod_title} : ") | |
st.text_area(gen_synopsis, disabled=True) | |
else: | |
st.write('Write a title for the generator to work !') | |