import streamlit as st from transformers import AutoTokenizer, TFAutoModelForCausalLM # MODEL TO CALL model_name = "Alirani/distilgpt2-finetuned-synopsis" tokenizer = AutoTokenizer.from_pretrained(model_name) model = TFAutoModelForCausalLM.from_pretrained(model_name) def generate_synopsis(model, tokenizer, title): input_ids = tokenizer(title, return_tensors="tf") output = model.generate(input_ids['input_ids'], max_length=150, num_beams=5, no_repeat_ngram_size=2, top_k=50, attention_mask=input_ids['attention_mask']) synopsis = tokenizer.decode(output[0], skip_special_tokens=True) return synopsis favicon = "https://i.ibb.co/JRdhFZg/favicon-32x32.png" st.set_page_config(page_title="LoreFinder-demo", page_icon = favicon, layout = 'wide', initial_sidebar_state = 'auto') st.title('Demo LoreFinder') st.header('Generate a story') prod_title = st.text_input('Type a title to generate a synopsis') button_synopsis = st.button('Get synopsis') if button_synopsis: if len(prod_title.split(' ')) > 0: gen_synopsis = generate_synopsis(model, tokenizer, prod_title) st.text_area(gen_synopsis, disabled=True) else: st.write('Write a title for the generator to work !')