|
import re |
|
import gradio as gr |
|
|
|
import torch |
|
from transformers import DonutProcessor, VisionEncoderDecoderModel |
|
|
|
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") |
|
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
def process_document(image, question): |
|
|
|
pixel_values = processor(image, return_tensors="pt").pixel_values |
|
|
|
|
|
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" |
|
prompt = task_prompt.replace("{user_input}", question) |
|
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids |
|
|
|
|
|
outputs = model.generate( |
|
pixel_values.to(device), |
|
decoder_input_ids=decoder_input_ids.to(device), |
|
max_length=model.decoder.config.max_position_embeddings, |
|
early_stopping=True, |
|
pad_token_id=processor.tokenizer.pad_token_id, |
|
eos_token_id=processor.tokenizer.eos_token_id, |
|
use_cache=True, |
|
num_beams=1, |
|
bad_words_ids=[[processor.tokenizer.unk_token_id]], |
|
return_dict_in_generate=True, |
|
) |
|
|
|
|
|
sequence = processor.batch_decode(outputs.sequences)[0] |
|
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") |
|
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() |
|
|
|
return processor.token2json(sequence) |
|
|
|
description =""" |
|
<p> |
|
<center> |
|
Demo de OCR, el objetivo es preguntar al documento y que este extraiga la información . |
|
<img src="https://raw.githubusercontent.com/All-Aideas/sea_apirest/main/logo.png" alt="logo" width="250"/> |
|
</center> |
|
</p> |
|
""" |
|
|
|
article = "<p style='text-align: center'><a href='http://allaideas.com/index.html' target='_blank'>Ocrask: Link para mas info</a> </p>" |
|
|
|
demo = gr.Interface( |
|
fn=process_document, |
|
inputs=["image", "text"], |
|
outputs="json", |
|
title="Demo: OCRASK 📸", |
|
description=description, |
|
article=article, |
|
enable_queue=True, |
|
examples=[["ab.jpg", "mount?"],["example_1.png", "When is the coffee break?"], ["example_2.jpeg", "What's the population of Stoddard?"]], |
|
cache_examples=False) |
|
|
|
demo.launch() |