Amith Adiraju
commited on
Commit
·
8dc6fb5
1
Parent(s):
9a0f501
Renamed main to app, since huggingface spaces only allows app as the entry script name.
Browse files- src/app.py +71 -0
src/app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from inference.translate import (
|
4 |
+
extract_filter_img,
|
5 |
+
transcribe_menu_model,
|
6 |
+
load_models
|
7 |
+
)
|
8 |
+
|
9 |
+
from inference.config import DEBUG_MODE
|
10 |
+
from PIL import Image
|
11 |
+
import time
|
12 |
+
|
13 |
+
# Streamlit app
|
14 |
+
st.title("Image Upload and Processing")
|
15 |
+
|
16 |
+
|
17 |
+
# Using open source text detector, LLM for explaining items
|
18 |
+
text_extractor, \
|
19 |
+
item_tokenizer,item_summarizer = load_models(item_summarizer = "google/flan-t5-large")
|
20 |
+
|
21 |
+
# Streamlit function to upload an image from any device
|
22 |
+
uploaded_file = st.file_uploader("Choose an image...",
|
23 |
+
type=["jpg", "jpeg", "png"])
|
24 |
+
|
25 |
+
|
26 |
+
# Submit button
|
27 |
+
if uploaded_file is not None:
|
28 |
+
image = Image.open(uploaded_file)
|
29 |
+
|
30 |
+
# Only show if user wants to see
|
31 |
+
if st.checkbox('Show Uploaded Image'):
|
32 |
+
st.image(image,
|
33 |
+
caption='Uploaded Image',
|
34 |
+
use_column_width=True)
|
35 |
+
|
36 |
+
# Submit button
|
37 |
+
if st.button("Submit"):
|
38 |
+
|
39 |
+
msg1 = st.empty()
|
40 |
+
msg1.write("Pre-processing and extracting text out of your image ....")
|
41 |
+
st_filter = time.perf_counter()
|
42 |
+
# Call the extract_filter_img function
|
43 |
+
filtered_text = extract_filter_img(image, text_extractor)
|
44 |
+
en_filter = time.perf_counter()
|
45 |
+
|
46 |
+
msg2 = st.empty()
|
47 |
+
msg2.write("All pre-processing done, transcribing your menu items now ....")
|
48 |
+
st_trans_llm = time.perf_counter()
|
49 |
+
translated_text_dict = transcribe_menu_model(menu_texts=filtered_text,
|
50 |
+
text_tokenizer=item_tokenizer,
|
51 |
+
text_summarizer=item_summarizer
|
52 |
+
)
|
53 |
+
|
54 |
+
msg3 = st.empty()
|
55 |
+
msg3.write("Done transcribing ... ")
|
56 |
+
en_trans_llm = time.perf_counter()
|
57 |
+
|
58 |
+
msg1.empty(); msg2.empty(); msg3.empty()
|
59 |
+
st.success("Image processed successfully! " )
|
60 |
+
|
61 |
+
if DEBUG_MODE:
|
62 |
+
filter_time_sec = en_filter - st_filter
|
63 |
+
llm_time_sec = en_trans_llm - st_trans_llm
|
64 |
+
total_time_sec = filter_time_sec + llm_time_sec
|
65 |
+
|
66 |
+
st.write("Time took to extract and filter text {}".format(filter_time_sec))
|
67 |
+
st.write("Time took to summarize by LLM {}".format(llm_time_sec))
|
68 |
+
st.write('Overall time taken in seconds: {}'.format(total_time_sec))
|
69 |
+
|
70 |
+
st.table(translated_text_dict)
|
71 |
+
|