File size: 4,144 Bytes
06d7744
4092f98
e41009f
d9b33ca
 
e41009f
a36dcb9
86e26e9
 
4092f98
 
 
 
 
 
 
 
 
155e281
4092f98
86e26e9
 
 
4092f98
 
155e281
86e26e9
 
0b3d03a
 
 
 
86e26e9
4092f98
86e26e9
4092f98
 
82a876f
 
 
 
7ad395f
4092f98
 
86e26e9
 
 
 
 
 
 
 
 
4092f98
86e26e9
 
 
4092f98
 
86e26e9
4092f98
 
86e26e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4092f98
82a876f
 
86e26e9
 
 
4092f98
bf3d8c9
 
4092f98
bf3d8c9
4092f98
 
86e26e9
a4d7a24
86e26e9
 
 
 
 
 
 
 
4092f98
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')
os.system('pip install -q git+https://github.com/huggingface/transformers.git')
os.system('pip install pytesseract')



import gradio as gr
import numpy as np
from transformers import AutoModelForTokenClassification
from datasets.features import ClassLabel
from transformers import AutoProcessor
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
import torch
from datasets import load_metric
from transformers import LayoutLMv3ForTokenClassification
from transformers.data.data_collator import default_data_collator


from transformers import AutoModelForTokenClassification
from datasets import load_dataset
from PIL import Image, ImageDraw, ImageFont


processor = AutoProcessor.from_pretrained("Ammar-alhaj-ali/LayoutLMv3-Fine-Tuning-FUNSD", apply_ocr=True)
model = AutoModelForTokenClassification.from_pretrained("Ammar-alhaj-ali/LayoutLMv3-Fine-Tuning-FUNSD")

# load image example
#dataset = load_dataset("nielsr/funsd-layoutlmv3", split="test")
#Image.open(dataset[2]["image_path"]).convert("RGB").save("img1.png")
#Image.open(dataset[1]["image_path"]).convert("RGB").save("img2.png")
#Image.open(dataset[0]["image_path"]).convert("RGB").save("img3.png")
# define id2label, label2color
labels = ['O', 'B-HEADER', 'I-HEADER', 'B-QUESTION', 'I-QUESTION', 'B-ANSWER', 'I-ANSWER']
id2label = {v: k for v, k in enumerate(labels)}
label2color = {
    "B-HEADER": 'red',
    "I-HEADER": 'red',
    "B-QUESTION": 'red',
    "I-QUESTION": "red",
    "B-ANSWER": 'blue',
    "I-ANSWER": 'blue',
    "O": 'orange'
  } 

def unnormalize_box(bbox, width, height):
     return [
         width * (bbox[0] / 1000),
         height * (bbox[1] / 1000),
         width * (bbox[2] / 1000),
         height * (bbox[3] / 1000),
     ]


def iob_to_label(label):
    return label



def process_image(image):

    print(type(image))
    width, height = image.size

    # encode
    encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
    offset_mapping = encoding.pop('offset_mapping')

    # forward pass
    outputs = model(**encoding)

    # get predictions
    predictions = outputs.logits.argmax(-1).squeeze().tolist()
    token_boxes = encoding.bbox.squeeze().tolist()

    # only keep non-subword predictions
    is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
    true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
    true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]

    # draw predictions over the image
    draw = ImageDraw.Draw(image)
    font = ImageFont.load_default()
    for prediction, box in zip(true_predictions, true_boxes):
        predicted_label = iob_to_label(prediction)
        draw.rectangle(box, outline=label2color[predicted_label]) #label2color[predicted_label]
        draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) #label2color[predicted_label]
    
    return image


title = "Extracting information from FUNSD using the LayoutLMv3 "
description = "I Fine tuned LayoutLMv3 on FUNSD (Form Understanding in. Noisy Scanned Documents) "

article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2]" 

examples =[['img1.png'],['img2.png'],['img3.png']]

css = """.output_image, .input_image {height: 600px !important}"""

iface = gr.Interface(fn=process_image, 
                     inputs=gr.inputs.Image(type="pil"), 
                     outputs=gr.outputs.Image(type="pil", label="annotated image"),
                     title=title,
                     description=description,
                     article=article,
                     examples=examples,
                     css=css,
                     analytics_enabled = True, enable_queue=True)

iface.launch(inline=False, share=False, debug=False)