import gradio as gr import torch from sahi.prediction import ObjectPrediction from sahi.utils.cv import visualize_object_predictions, read_image from ultralyticsplus import YOLO, render_result image_path = [ ['test/web form.jpg', 'foduucom/web-form-ui-field-detection', 640, 0.25, 0.45], ['test/web form2.jpg', 'foduucom/web-form-ui-field-detection', 640, 0.25, 0.45] ] def yolov8_inference( image: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = None, image_size: gr.inputs.Slider = 640, conf_threshold: gr.inputs.Slider = 0.25, iou_threshold: gr.inputs.Slider = 0.45, ): """ YOLOv8 inference function Args: image: Input image model_path: Path to the model image_size: Image size conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ model = YOLO(model_path) model.overrides['conf'] = conf_threshold model.overrides['iou']= iou_threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 image = read_image(image) results = model.predict(image) render = render_result(model=model, image=image, result=results[0]) return render inputs = [ gr.inputs.Image(type="filepath", label="Input Image"), gr.inputs.Dropdown(["foduucom/web-form-ui-field-detection"], default="foduucom/web-form-ui-field-detection", label="Model"), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.outputs.Image(type="filepath", label="Output Image") title = "Ui form : web form ui field Detection in Images" interface_image = gr.Interface( fn=yolov8_inference, inputs=inputs_image, outputs=outputs_image, title=model_heading, description=description, examples=image_path, cache_examples=False, theme='huggingface' ) gr.TabbedInterface( [interface_image], tab_names=['Image inference'] ).queue().launch()