Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
class BiLSTM(nn.Module): | |
def __init__(self, input_size, hidden_size, num_layers, output_size): | |
super(BiLSTM, self).__init__() | |
self.hidden_size = hidden_size | |
self.num_layers = num_layers | |
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True) | |
self.fc = nn.Linear(hidden_size*2, output_size) # Умножаем на 2 из-за двунаправленности | |
def forward(self, x): | |
h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(x.device) # 2 для bidirectional | |
c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(x.device) | |
out, _ = self.lstm(x, (h0, c0)) | |
out = self.fc(out[:, -1, :]) | |
return out | |
# device = 'cpu' | |
# model = BiLSTM().to(device) |