Spaces:
Runtime error
Runtime error
storresbusquets
commited on
Commit
•
86a552a
1
Parent(s):
14cf752
Update app.py
Browse files
app.py
CHANGED
@@ -28,7 +28,11 @@ class GradioInference:
|
|
28 |
self.yt = None
|
29 |
|
30 |
# Initialize summary model for English
|
31 |
-
self.
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Initialize VoiceLabT5 model and tokenizer
|
34 |
self.keyword_model = T5ForConditionalGeneration.from_pretrained(
|
@@ -41,9 +45,6 @@ class GradioInference:
|
|
41 |
# Sentiment Classifier
|
42 |
self.classifier = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student", return_all_scores=False)
|
43 |
|
44 |
-
# Initialize Multilingual summary model
|
45 |
-
self.tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/mT5_multilingual_XLSum", truncation=True)
|
46 |
-
self.model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/mT5_multilingual_XLSum")
|
47 |
|
48 |
def __call__(self, link, lang, size, progress=gr.Progress()):
|
49 |
"""
|
@@ -57,6 +58,7 @@ class GradioInference:
|
|
57 |
- WordCloud: using the wordcloud python library.
|
58 |
"""
|
59 |
progress(0, desc="Starting analysis")
|
|
|
60 |
if self.yt is None:
|
61 |
self.yt = YouTube(link)
|
62 |
|
@@ -78,14 +80,18 @@ class GradioInference:
|
|
78 |
progress(0.40, desc="Summarizing")
|
79 |
|
80 |
# Perform summarization on the transcription
|
81 |
-
transcription_summary = self.
|
82 |
-
results["text"],
|
|
|
|
|
|
|
|
|
83 |
)
|
84 |
|
85 |
-
#### Resumen multilingue
|
86 |
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
|
87 |
|
88 |
-
input_ids_sum = self.
|
89 |
[WHITESPACE_HANDLER(results["text"])],
|
90 |
return_tensors="pt",
|
91 |
padding="max_length",
|
@@ -93,14 +99,14 @@ class GradioInference:
|
|
93 |
max_length=512
|
94 |
)["input_ids"]
|
95 |
|
96 |
-
output_ids_sum = self.
|
97 |
input_ids=input_ids_sum,
|
98 |
-
max_length=
|
99 |
no_repeat_ngram_size=2,
|
100 |
num_beams=4
|
101 |
)[0]
|
102 |
|
103 |
-
summary = self.
|
104 |
output_ids_sum,
|
105 |
skip_special_tokens=True,
|
106 |
clean_up_tokenization_spaces=False
|
@@ -112,12 +118,19 @@ class GradioInference:
|
|
112 |
# Extract keywords using VoiceLabT5
|
113 |
task_prefix = "Keywords: "
|
114 |
input_sequence = task_prefix + results["text"]
|
|
|
115 |
input_ids = self.keyword_tokenizer(
|
116 |
-
input_sequence,
|
|
|
|
|
117 |
).input_ids
|
|
|
118 |
output = self.keyword_model.generate(
|
119 |
-
input_ids,
|
|
|
|
|
120 |
)
|
|
|
121 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
122 |
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
123 |
formatted_keywords = "\n".join([f"• {keyword}" for keyword in keywords])
|
@@ -201,14 +214,14 @@ class GradioInference:
|
|
201 |
progress(0.40, desc="Summarizing")
|
202 |
|
203 |
# Perform summarization on the transcription
|
204 |
-
transcription_summary = self.
|
205 |
results["text"], max_length=150, min_length=30, do_sample=False, truncation=True
|
206 |
)
|
207 |
|
208 |
#### Resumen multilingue
|
209 |
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
|
210 |
|
211 |
-
input_ids_sum = self.
|
212 |
[WHITESPACE_HANDLER(results["text"])],
|
213 |
return_tensors="pt",
|
214 |
padding="max_length",
|
@@ -216,14 +229,14 @@ class GradioInference:
|
|
216 |
max_length=512
|
217 |
)["input_ids"]
|
218 |
|
219 |
-
output_ids_sum = self.
|
220 |
input_ids=input_ids_sum,
|
221 |
max_length=130,
|
222 |
no_repeat_ngram_size=2,
|
223 |
num_beams=4
|
224 |
)[0]
|
225 |
|
226 |
-
summary = self.
|
227 |
output_ids_sum,
|
228 |
skip_special_tokens=True,
|
229 |
clean_up_tokenization_spaces=False
|
@@ -235,11 +248,17 @@ class GradioInference:
|
|
235 |
# Extract keywords using VoiceLabT5
|
236 |
task_prefix = "Keywords: "
|
237 |
input_sequence = task_prefix + results["text"]
|
|
|
238 |
input_ids = self.keyword_tokenizer(
|
239 |
-
input_sequence,
|
|
|
|
|
240 |
).input_ids
|
|
|
241 |
output = self.keyword_model.generate(
|
242 |
-
input_ids,
|
|
|
|
|
243 |
)
|
244 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
245 |
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
@@ -267,10 +286,9 @@ class GradioInference:
|
|
267 |
)
|
268 |
wordcloud_image = wordcloud.to_image()
|
269 |
|
270 |
-
if lang == "english":
|
271 |
return (
|
272 |
results["text"],
|
273 |
-
# summ,
|
274 |
transcription_summary[0]["summary_text"],
|
275 |
formatted_keywords,
|
276 |
formatted_sentiment,
|
@@ -279,7 +297,6 @@ class GradioInference:
|
|
279 |
else:
|
280 |
return (
|
281 |
results["text"],
|
282 |
-
# summ,
|
283 |
summary,
|
284 |
formatted_keywords,
|
285 |
formatted_sentiment,
|
@@ -306,7 +323,7 @@ with block as demo:
|
|
306 |
</div>
|
307 |
"""
|
308 |
)
|
309 |
-
with gr.Group():
|
310 |
with gr.Tab("From YouTube 📹"):
|
311 |
with gr.Box():
|
312 |
|
|
|
28 |
self.yt = None
|
29 |
|
30 |
# Initialize summary model for English
|
31 |
+
self.bart_summarizer = pipeline("summarization", model="facebook/bart-large-cnn", truncation=True)
|
32 |
+
|
33 |
+
# Initialize Multilingual summary model
|
34 |
+
self.mt5_tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/mT5_multilingual_XLSum", truncation=True)
|
35 |
+
self.mt5_model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/mT5_multilingual_XLSum")
|
36 |
|
37 |
# Initialize VoiceLabT5 model and tokenizer
|
38 |
self.keyword_model = T5ForConditionalGeneration.from_pretrained(
|
|
|
45 |
# Sentiment Classifier
|
46 |
self.classifier = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student", return_all_scores=False)
|
47 |
|
|
|
|
|
|
|
48 |
|
49 |
def __call__(self, link, lang, size, progress=gr.Progress()):
|
50 |
"""
|
|
|
58 |
- WordCloud: using the wordcloud python library.
|
59 |
"""
|
60 |
progress(0, desc="Starting analysis")
|
61 |
+
|
62 |
if self.yt is None:
|
63 |
self.yt = YouTube(link)
|
64 |
|
|
|
80 |
progress(0.40, desc="Summarizing")
|
81 |
|
82 |
# Perform summarization on the transcription
|
83 |
+
transcription_summary = self.bart_summarizer(
|
84 |
+
results["text"],
|
85 |
+
max_length=256,
|
86 |
+
min_length=30,
|
87 |
+
do_sample=False,
|
88 |
+
truncation=True
|
89 |
)
|
90 |
|
91 |
+
#### Resumen multilingue con mt5
|
92 |
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
|
93 |
|
94 |
+
input_ids_sum = self.mt5_tokenizer(
|
95 |
[WHITESPACE_HANDLER(results["text"])],
|
96 |
return_tensors="pt",
|
97 |
padding="max_length",
|
|
|
99 |
max_length=512
|
100 |
)["input_ids"]
|
101 |
|
102 |
+
output_ids_sum = self.mt5_model.generate(
|
103 |
input_ids=input_ids_sum,
|
104 |
+
max_length=256,
|
105 |
no_repeat_ngram_size=2,
|
106 |
num_beams=4
|
107 |
)[0]
|
108 |
|
109 |
+
summary = self.mt5_tokenizer.decode(
|
110 |
output_ids_sum,
|
111 |
skip_special_tokens=True,
|
112 |
clean_up_tokenization_spaces=False
|
|
|
118 |
# Extract keywords using VoiceLabT5
|
119 |
task_prefix = "Keywords: "
|
120 |
input_sequence = task_prefix + results["text"]
|
121 |
+
|
122 |
input_ids = self.keyword_tokenizer(
|
123 |
+
input_sequence,
|
124 |
+
return_tensors="pt",
|
125 |
+
truncation=False
|
126 |
).input_ids
|
127 |
+
|
128 |
output = self.keyword_model.generate(
|
129 |
+
input_ids,
|
130 |
+
no_repeat_ngram_size=3,
|
131 |
+
num_beams=4
|
132 |
)
|
133 |
+
|
134 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
135 |
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
136 |
formatted_keywords = "\n".join([f"• {keyword}" for keyword in keywords])
|
|
|
214 |
progress(0.40, desc="Summarizing")
|
215 |
|
216 |
# Perform summarization on the transcription
|
217 |
+
transcription_summary = self.bart_summarizer(
|
218 |
results["text"], max_length=150, min_length=30, do_sample=False, truncation=True
|
219 |
)
|
220 |
|
221 |
#### Resumen multilingue
|
222 |
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
|
223 |
|
224 |
+
input_ids_sum = self.mt5_tokenizer(
|
225 |
[WHITESPACE_HANDLER(results["text"])],
|
226 |
return_tensors="pt",
|
227 |
padding="max_length",
|
|
|
229 |
max_length=512
|
230 |
)["input_ids"]
|
231 |
|
232 |
+
output_ids_sum = self.mt5_model.generate(
|
233 |
input_ids=input_ids_sum,
|
234 |
max_length=130,
|
235 |
no_repeat_ngram_size=2,
|
236 |
num_beams=4
|
237 |
)[0]
|
238 |
|
239 |
+
summary = self.mt5_tokenizer.decode(
|
240 |
output_ids_sum,
|
241 |
skip_special_tokens=True,
|
242 |
clean_up_tokenization_spaces=False
|
|
|
248 |
# Extract keywords using VoiceLabT5
|
249 |
task_prefix = "Keywords: "
|
250 |
input_sequence = task_prefix + results["text"]
|
251 |
+
|
252 |
input_ids = self.keyword_tokenizer(
|
253 |
+
input_sequence,
|
254 |
+
return_tensors="pt",
|
255 |
+
truncation=False
|
256 |
).input_ids
|
257 |
+
|
258 |
output = self.keyword_model.generate(
|
259 |
+
input_ids,
|
260 |
+
no_repeat_ngram_size=3,
|
261 |
+
num_beams=4
|
262 |
)
|
263 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
264 |
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
|
|
286 |
)
|
287 |
wordcloud_image = wordcloud.to_image()
|
288 |
|
289 |
+
if lang == "english" or lang == "none":
|
290 |
return (
|
291 |
results["text"],
|
|
|
292 |
transcription_summary[0]["summary_text"],
|
293 |
formatted_keywords,
|
294 |
formatted_sentiment,
|
|
|
297 |
else:
|
298 |
return (
|
299 |
results["text"],
|
|
|
300 |
summary,
|
301 |
formatted_keywords,
|
302 |
formatted_sentiment,
|
|
|
323 |
</div>
|
324 |
"""
|
325 |
)
|
326 |
+
with gr.Group(spacing_size="md", radius_size="md"):
|
327 |
with gr.Tab("From YouTube 📹"):
|
328 |
with gr.Box():
|
329 |
|