Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from diffnext.pipelines import NOVAPipeline
|
4 |
+
from diffnext.utils import export_to_image, export_to_video
|
5 |
+
|
6 |
+
# Inizializzazione del modello
|
7 |
+
model_id = "BAAI/nova-d48w1024-osp480"
|
8 |
+
model_args = {"torch_dtype": torch.float16, "trust_remote_code": True}
|
9 |
+
pipe = NOVAPipeline.from_pretrained(model_id, **model_args)
|
10 |
+
pipe = pipe.to("cuda")
|
11 |
+
|
12 |
+
# Funzioni per generare immagine e video
|
13 |
+
def generate_image(prompt: str):
|
14 |
+
image = pipe(prompt, max_latent_length=1).frames[0, 0]
|
15 |
+
export_to_image(image, "output.jpg")
|
16 |
+
return "output.jpg"
|
17 |
+
|
18 |
+
def generate_video(prompt: str):
|
19 |
+
video = pipe(prompt, max_latent_length=9).frames[0]
|
20 |
+
export_to_video(video, "output.mp4", fps=12)
|
21 |
+
return "output.mp4"
|
22 |
+
|
23 |
+
def generate_video_high_quality(prompt: str):
|
24 |
+
video = pipe(
|
25 |
+
prompt,
|
26 |
+
max_latent_length=9,
|
27 |
+
num_inference_steps=128,
|
28 |
+
num_diffusion_steps=100,
|
29 |
+
).frames[0]
|
30 |
+
export_to_video(video, "output_v2.mp4", fps=12)
|
31 |
+
return "output_v2.mp4"
|
32 |
+
|
33 |
+
|
34 |
+
)
|
35 |
+
|
36 |
+
iface3 = gr.Interface(
|
37 |
+
fn=generate_video_high_quality,
|
38 |
+
inputs=gr.Textbox(label="Enter Prompt"),
|
39 |
+
outputs=gr.Video(label="High Quality Generated Video"),
|
40 |
+
live=True
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
iface3.launch(share=True)
|