Spaces:
Running
Running
from google.colab import drive | |
drive.mount('/content/drive') | |
"""Install Dependencies""" | |
pip install transformers librosa torch soundfile numba numpy TTS datasets gradio protobuf==3.20.3 | |
"""Emotion Detection (Using Text Dataset) | |
""" | |
!pip install --upgrade numpy tensorflow transformers TTS | |
!pip freeze > requirements.txt | |
from transformers import pipeline | |
# Load pre-trained model for emotion detection | |
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion") | |
def detect_emotion(text): | |
result = emotion_classifier(text) | |
emotion = result[0]['label'] | |
confidence = result[0]['score'] | |
return emotion, confidence | |
# Example usage | |
text = "I am feeling excited today!" | |
emotion, confidence = detect_emotion(text) | |
print(f"Detected Emotion: {emotion}, Confidence: {confidence}") | |
"""Emotion-Aware TTS (Using Tacotron 2 or Similar)""" | |
import torch | |
import librosa | |
import numpy as np | |
from TTS.api import TTS # Using Coqui TTS for simplicity | |
# Load TTS model and vocoder automatically during initialization | |
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC") | |
def generate_emotional_speech(text, emotion): | |
# Map emotion to voice modulation parameters (pitch, speed) | |
emotion_settings = { | |
"neutral": {"pitch": 1.0, "speed": 1.0}, # Baseline conversational tone | |
"joy": {"pitch": 1.3, "speed": 1.2}, # Upbeat and energetic | |
"sadness": {"pitch": 0.8, "speed": 0.9}, # Subdued, slow tone | |
"anger": {"pitch": 1.6, "speed": 1.4}, # Intense and sharp | |
"fear": {"pitch": 1.2, "speed": 0.95}, # Tense and slightly slow | |
"surprise": {"pitch": 1.5, "speed": 1.3}, # Excitement with high pitch and fast speech | |
"disgust": {"pitch": 0.9, "speed": 0.95}, # Low and deliberate | |
"shame": {"pitch": 0.8, "speed": 0.85}, # Quiet, subdued tone | |
} | |
# Retrieve pitch and speed based on detected emotion | |
settings = emotion_settings.get(emotion, {"pitch": 1.0, "speed": 1.0}) | |
# Generate speech with the TTS model | |
# Instead of directly passing speed and pitch to tts_to_file, | |
# We adjust the text to simulate the effect. This is a temporary solution. | |
# You might need to fine-tune these adjustments or consider a different TTS library | |
# with better control over speech parameters. | |
adjusted_text = text | |
if settings['speed'] > 1.0: | |
adjusted_text = adjusted_text.replace(" ", ".") # Simulate faster speech | |
elif settings['speed'] < 1.0: | |
adjusted_text = adjusted_text.replace(" ", "...") # Simulate slower speech | |
# Explicitly specify the output path | |
audio_path = "output.wav" # Or any desired filename | |
tts_model.tts_to_file(text=adjusted_text, file_path=audio_path) # Pass file_path argument | |
return audio_path | |
# Example usage | |
emotion = "happy" | |
output_audio = generate_emotional_speech("Welcome to the smart library!", emotion) | |
print(f"Generated Speech Saved At: {output_audio}") | |
"""Integrating the Workflow""" | |
from IPython.display import Audio, display | |
def emotion_aware_tts_pipeline(text): | |
emotion, confidence = detect_emotion(text) | |
print(f"Emotion Detected: {emotion} with Confidence: {confidence:.2f}") | |
audio_path = generate_emotional_speech(text, emotion) | |
print(f"Audio Generated: {audio_path}") | |
# Display and play the audio | |
display(Audio(audio_path, autoplay=True)) | |
# Example usage | |
emotion_aware_tts_pipeline("I can’t stooop smiiiling, everything feels perrrfect!") | |
"""Fine-tuning the Emotion Detection Model""" | |
import os | |
os.environ["WANDB_DISABLED"] = "true" | |
from google.colab import drive | |
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer | |
from datasets import load_dataset | |
# Load dataset | |
dataset = load_dataset('/content/drive/MyDrive/Emotion_Model') #path_to_your_dataset | |
# Preprocess data | |
tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion") | |
# Define a function to map emotion labels to integers | |
def map_emotion_to_int(example): | |
# Assuming your dataset has an 'emotion' column with string labels | |
# Replace this with your actual emotion labels and their corresponding integers | |
# *Change 'emotion' to the actual column name in your dataset* | |
emotion_mapping = { | |
"neutral": 0, | |
"joy": 1, | |
"sad": 2, | |
"anger": 3, | |
"fear": 4, | |
"surprise": 5, | |
"disgust": 6, | |
"shame": 7, | |
} | |
# Assuming your emotion column is named 'label' | |
# example['label'] = emotion_mapping[example['emotion']] # Create a new 'label' column with integer values | |
example['label'] = emotion_mapping.get(example['label'], -1) # If the label is not in the emotion mapping then we set it to -1. We can later filter these examples out | |
return example | |
def preprocess_data(example): | |
return tokenizer(example['text'], truncation=True, padding=True, max_length=512) # Added max_length for consistency | |
# Apply emotion mapping before tokenization | |
dataset = dataset.map(map_emotion_to_int, batched=False) | |
# *Keep the 'label' column for training. Only remove 'text'* | |
# Filter out examples with labels not in emotion_mapping (-1) | |
dataset = dataset.filter(lambda example: example['label'] != -1) # Filter out examples with label -1 | |
tokenized_dataset = dataset.map(preprocess_data, batched=True, remove_columns=['text']) | |
# Load model | |
# model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion", num_labels=8) | |
# Load model with ignore_mismatched_sizes=True | |
model = AutoModelForSequenceClassification.from_pretrained( | |
"bhadresh-savani/distilbert-base-uncased-emotion", | |
num_labels=8, | |
ignore_mismatched_sizes=True | |
) | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", # Directory for model checkpoints and logs | |
evaluation_strategy="epoch", # Evaluate after every epoch | |
learning_rate=5e-5, # Start with 5e-5 (slightly higher than default 2e-5) | |
per_device_train_batch_size=16, # Use 16 for balance between memory usage and training speed | |
gradient_accumulation_steps=4, # Accumulate gradients to simulate larger batch size | |
num_train_epochs=5, # Train for 4-5 epochs (typically enough for fine-tuning) | |
weight_decay=0.01, # Regularization to avoid overfitting | |
save_strategy="epoch", # Save checkpoints after each epoch | |
logging_dir="./logs", # Directory for logging | |
logging_steps=100, # Log every 100 steps | |
warmup_steps=500, # Gradual learning rate increase for the first 500 steps | |
save_total_limit=3, # Keep only the last 3 checkpoints | |
fp16=True, # Enable mixed precision for faster training if GPU supports it | |
load_best_model_at_end=True, # Load the best model at the end of training | |
metric_for_best_model="eval_loss", # Use evaluation loss to select the best model | |
greater_is_better=False, # Lower loss is better | |
) | |
# Train model | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_dataset['train'], | |
eval_dataset=tokenized_dataset['validation'], | |
tokenizer=tokenizer, | |
) | |
trainer.train() | |
# Save the model and tokenizer to Google Drive | |
model_save_path = "/content/drive/My Drive/emotion_detection_model1" | |
tokenizer_save_path = "/content/drive/My Drive/emotion_detection_model1" | |
# Save the fine-tuned model | |
model.save_pretrained(model_save_path) | |
tokenizer.save_pretrained(tokenizer_save_path) | |
print("Model and tokenizer saved to Google Drive.") | |
"""Reload the Fine-Tuned Model""" | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
# Mount Google Drive | |
from google.colab import drive | |
drive.mount('/content/drive') | |
# Path to the saved model and tokenizer | |
model_save_path = "/content/drive/My Drive/emotion_detection_model" | |
tokenizer_save_path = "/content/drive/My Drive/emotion_detection_model" | |
# Load the fine-tuned model and tokenizer | |
model = AutoModelForSequenceClassification.from_pretrained(model_save_path) | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path) | |
print("Fine-tuned model and tokenizer loaded successfully.") | |
"""Test the Reloaded Model""" | |
from transformers import pipeline | |
# Create a text classification pipeline with the loaded model | |
emotion_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) | |
# Test with a sample text | |
text = "I feel so upset today!" | |
result = emotion_classifier(text) | |
print(result) | |
"""Fine-tuning the TTS System""" | |
from TTS.api import TTS | |
from TTS.utils.audio import AudioProcessor | |
from TTS.tts.models.tacotron2 import Tacotron2 | |
import torch | |
# Load pre-trained model | |
#model = Tacotron2.load_model("tts_models/en/ljspeech/tacotron2-DDC") | |
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC") # Use TTS for model loading | |
# Access the Tacotron2 model from the TTS object | |
model = tts.synthesizer.tts_model | |
# Fine-tuning parameters | |
model.config.dataset_path = "/content/drive/MyDrive/RAVDESS" | |
model.config.num_epochs = 10 | |
# Train | |
model.train() | |
# Define the save path on Google Drive | |
save_path = "/content/drive/My Drive/fine_tuned_tacotron2.pth" | |
# Save the model's state dictionary using torch.save | |
torch.save(model.state_dict(), save_path) | |
"""Set up the Gradio interface""" | |
import gradio as gr | |
from transformers import pipeline | |
from TTS.api import TTS | |
# Load pre-trained emotion detection model | |
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion") | |
# Load TTS model | |
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC") | |
# Emotion-specific settings for pitch and speed | |
emotion_settings = { | |
"neutral": {"pitch": 1.0, "speed": 1.0}, | |
"joy": {"pitch": 1.3, "speed": 1.2}, | |
"sadness": {"pitch": 0.8, "speed": 0.9}, | |
"anger": {"pitch": 1.6, "speed": 1.4}, | |
"fear": {"pitch": 1.2, "speed": 0.95}, | |
"surprise": {"pitch": 1.5, "speed": 1.3}, | |
"disgust": {"pitch": 0.9, "speed": 0.95}, | |
"shame": {"pitch": 0.8, "speed": 0.85}, | |
} | |
import librosa | |
import soundfile as sf | |
def adjust_audio_speed(audio_path, speed_factor): | |
y, sr = librosa.load(audio_path) | |
y_speeded = librosa.effects.time_stretch(y, speed_factor) | |
sf.write(audio_path, y_speeded, sr) | |
def adjust_audio_pitch(audio_path, pitch_factor): | |
y, sr = librosa.load(audio_path) | |
y_shifted = librosa.effects.pitch_shift(y, sr, n_steps=pitch_factor) | |
sf.write(audio_path, y_shifted, sr) | |
def emotion_aware_tts_pipeline(input_text=None, file_input=None): | |
try: | |
# Get text from input or file | |
if file_input: | |
with open(file_input.name, 'r') as file: | |
input_text = file.read() | |
if input_text: | |
# Detect emotion | |
emotion_data = emotion_classifier(input_text)[0] | |
emotion = emotion_data['label'] | |
confidence = emotion_data['score'] | |
# Adjust pitch and speed | |
settings = emotion_settings.get(emotion.lower(), {"pitch": 1.0, "speed": 1.0}) | |
pitch = settings["pitch"] | |
speed = settings["speed"] | |
# Generate audio | |
audio_path = "output.wav" | |
tts_model.tts_to_file(text=input_text, file_path=audio_path) | |
# Adjust pitch and speed using librosa | |
if pitch != 1.0: | |
adjust_audio_pitch(audio_path, pitch) | |
if speed != 1.0: | |
adjust_audio_speed(audio_path, speed) | |
return f"Detected Emotion: {emotion} (Confidence: {confidence:.2f})", audio_path | |
else: | |
return "Please provide input text or file", None | |
except Exception as e: | |
return f"Error: {str(e)}", None | |
# Define Gradio interface | |
iface = gr.Interface( | |
fn=emotion_aware_tts_pipeline, | |
inputs=[ | |
gr.Textbox(label="Input Text", placeholder="Enter text here"), | |
gr.File(label="Upload a Text File") | |
], | |
outputs=[ | |
gr.Textbox(label="Detected Emotion"), | |
gr.Audio(label="Generated Audio") | |
], | |
title="Emotion-Aware Text-to-Speech", | |
description="Input text or upload a text file to detect the emotion and generate audio with emotion-aware modulation." | |
) | |
# Launch Gradio interface | |
iface.launch() | |