--- title: Prompt Search Engine emoji: 🐠 colorFrom: pink colorTo: purple sdk: docker pinned: false short_description: Improve image quality with better prompts! --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference # Prompt Search Engine ## Overview This project implements a prompt search engine for Stable Diffusion models. The search engine allows users to input a prompt and returns the top `n` most similar prompts from a corpus of existing prompts. This helps in generating higher quality images by providing more effective prompts. The search engine consists of two main components: - **Prompt Vectorizer**: Converts prompts into numerical vectors using a pre-trained embedding model. - **Similarity Scorer**: Measures the similarity between the input prompt and existing prompts using cosine similarity. ## Setup Instructions ### Requirements - Python >= 3.9 - pip ### Installation 1. **Clone the repository** ```bash git clone cd ``` 2. **Create a virtual environment (optional)** ```bash python -m venv venv source venv/bin/activate ``` 3. **Install dependencies** ```bash pip install -r requirements.txt ``` ## Running the `run.py` script The `run.py` script allows you to run the prompt search engine from the command line. ### Usage ```bash python run.py --query "Your query prompt here" --n 5 --model "all-MiniLM-L6-v2" ``` ### Arguments - `--query`: The query prompt (required). - `--n`: The number of similar prompts to return (default 5). - `--model`: The name of the SBERT model to use (default "all-MiniLM-L6-v2"). ### Example `python run.py --query "A cat wearing glasses, sitting at a computer" --n 7`