add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import ViltProcessor, ViltForQuestionAnswering
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
def load_model():
|
6 |
+
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
7 |
+
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
8 |
+
return processor, model
|
9 |
+
|
10 |
+
def predict(image, text, processor, model):
|
11 |
+
encoding = processor(image, text, return_tensors="pt")
|
12 |
+
outputs = model(**encoding)
|
13 |
+
logits = outputs.logits
|
14 |
+
idx = logits.argmax(-1).item()
|
15 |
+
return model.config.id2label[idx]
|
16 |
+
|
17 |
+
def main():
|
18 |
+
st.title("VQA")
|
19 |
+
st.write("Upload an image and input a question to get an answer.")
|
20 |
+
|
21 |
+
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
22 |
+
|
23 |
+
if uploaded_image is not None:
|
24 |
+
image = Image.open(uploaded_image)
|
25 |
+
question = st.text_input("Question about the image:")
|
26 |
+
|
27 |
+
if question:
|
28 |
+
processor, model = load_model()
|
29 |
+
answer = predict(image, question, processor, model)
|
30 |
+
|
31 |
+
col1, col2 = st.columns(2)
|
32 |
+
with col1:
|
33 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
34 |
+
with col2:
|
35 |
+
st.write(f"**Question:** {question}")
|
36 |
+
st.write(f"**Answer:** {answer}")
|
37 |
+
|
38 |
+
if __name__ == "__main__":
|
39 |
+
main()
|