File size: 1,149 Bytes
4d969ce
 
 
 
 
ed306c8
1923ab6
722929d
ed306c8
4d969ce
 
 
ed306c8
7ddfa83
4d969ce
 
 
 
d8a9c24
eda68a5
 
ed306c8
7ddfa83
4d969ce
 
722929d
4d969ce
722929d
 
d56f6b1
4d969ce
d56f6b1
4d969ce
7ddfa83
4d969ce
 
 
722929d
7ddfa83
4d969ce
ed306c8
4d969ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from autogen import ConversableAgent, AssistantAgent
from autogen.coding import LocalCommandLineCodeExecutor

#import os
#from IPython.display import Image

def run_multi_agent(llm, message):
    llm_config = {"model": llm}
    
    executor = LocalCommandLineCodeExecutor(
        timeout=60,
        work_dir="coding",
    )
    
    code_executor_agent = ConversableAgent(
        name="code_executor_agent",
        llm_config=False,
        code_execution_config={"executor": executor},
        human_input_mode="NEVER",
        default_auto_reply=
        "Please continue. If everything is done, reply 'TERMINATE'.",
    )
    
    code_writer_agent = AssistantAgent(
        name="code_writer_agent",
        llm_config=llm_config,
        code_execution_config=False,
        human_input_mode="NEVER",
    )
    
    code_writer_agent_system_message = code_writer_agent.system_message
    
    print(code_writer_agent_system_message)
    
    chat_result = code_executor_agent.initiate_chat(
        code_writer_agent,
        message=message,
    )
    
    #Image(os.path.join("coding", "ytd_stock_gains.png"))
    
    return chat_result