Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
import numpy as np | |
import requests | |
from requests_toolbelt.multipart.encoder import MultipartEncoder | |
from urllib.parse import urlparse | |
import logging | |
import json | |
from io import BytesIO | |
from dataclasses import dataclass | |
class TryOnDiffusionAPIResponse: | |
status_code: int | |
image: np.ndarray = None | |
response_data: bytes = None | |
error_details: str = None | |
seed: int = None | |
class TryOnDiffusionClient: | |
def __init__(self, base_url: str = "http://localhost:8000/", api_key: str = ""): | |
self._logger = logging.getLogger("try_on_diffusion_client") | |
self._base_url = base_url | |
self._api_key = api_key | |
if self._base_url[-1] == "/": | |
self._base_url = self._base_url[:-1] | |
parsed_url = urlparse(self._base_url) | |
self._rapidapi_host = parsed_url.netloc if parsed_url.netloc.endswith(".rapidapi.com") else None | |
if self._rapidapi_host is not None: | |
self._logger.info(f"Using RapidAPI proxy: {self._rapidapi_host}") | |
def _image_to_upload_file(image: np.ndarray) -> tuple: | |
_, jpeg_data = cv2.imencode(".jpg", image, [int(cv2.IMWRITE_JPEG_QUALITY), 99]) | |
jpeg_data = jpeg_data.tobytes() | |
fp = BytesIO(jpeg_data) | |
return "image.jpg", fp, "image/jpeg" | |
def try_on_file( | |
self, | |
clothing_image: np.ndarray = None, | |
clothing_prompt: str = None, | |
avatar_image: np.ndarray = None, | |
avatar_prompt: str = None, | |
avatar_sex: str = None, | |
background_image: np.ndarray = None, | |
background_prompt: str = None, | |
seed: int = -1, | |
raw_response: bool = False, | |
) -> TryOnDiffusionAPIResponse: | |
url = self._base_url + "/try-on-file" | |
request_data = {"seed": str(seed)} | |
if clothing_image is not None: | |
request_data["clothing_image"] = self._image_to_upload_file(clothing_image) | |
if clothing_prompt is not None: | |
request_data["clothing_prompt"] = clothing_prompt | |
if avatar_image is not None: | |
request_data["avatar_image"] = self._image_to_upload_file(avatar_image) | |
if avatar_prompt is not None: | |
request_data["avatar_prompt"] = avatar_prompt | |
if avatar_sex is not None: | |
request_data["avatar_sex"] = avatar_sex | |
if background_image is not None: | |
request_data["background_image"] = self._image_to_upload_file(background_image) | |
if background_prompt is not None: | |
request_data["background_prompt"] = background_prompt | |
multipart_data = MultipartEncoder(fields=request_data) | |
headers = {"Content-Type": multipart_data.content_type} | |
if self._rapidapi_host is not None: | |
headers["X-RapidAPI-Key"] = self._api_key | |
headers["X-RapidAPI-Host"] = self._rapidapi_host | |
else: | |
headers["X-API-Key"] = self._api_key | |
try: | |
response = requests.post( | |
url, | |
data=multipart_data, | |
headers=headers, | |
) | |
except Exception as e: | |
self._logger.error(e, exc_info=True) | |
return TryOnDiffusionAPIResponse(status_code=0) | |
if response.status_code != 200: | |
self._logger.warning(f"Request failed, status code: {response.status_code}, response: {response.content}") | |
result = TryOnDiffusionAPIResponse(status_code=response.status_code) | |
if not raw_response and response.status_code == 200: | |
try: | |
result.image = cv2.imdecode(np.frombuffer(response.content, np.uint8), cv2.IMREAD_COLOR) | |
except: | |
result.image = None | |
else: | |
result.response_data = response.content | |
if result.status_code == 200: | |
if "X-Seed" in response.headers: | |
result.seed = int(response.headers["X-Seed"]) | |
else: | |
try: | |
response_json = ( | |
json.loads(result.response_data.decode("utf-8")) if result.response_data is not None else None | |
) | |
if response_json is not None and "detail" in response_json: | |
result.error_details = response_json["detail"] | |
except: | |
result.error_details = None | |
return result | |