Spaces:
Runtime error
Runtime error
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, EulerAncestralDiscreteScheduler | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import random | |
import os | |
from huggingface_hub import hf_hub_download | |
import torch | |
from torch import autocast | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
from safetensors import safe_open | |
from compel import Compel, ReturnedEmbeddingsType | |
from huggingface_hub import hf_hub_download | |
model_id = 'aipicasso/emi' | |
auth_token=os.environ["ACCESS_TOKEN"] | |
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler", use_auth_token=auth_token) | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
scheduler=scheduler, use_auth_token=auth_token) | |
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
#ckpt_file=hf_hub_download(repo_id=model_id, filename="v2.safetensors", token=auth_token) | |
#pipe = StableDiffusionXLPipeline.from_single_file( | |
# ckpt_file, | |
# torch_dtype=torch.float16, | |
# scheduler=scheduler | |
#) | |
#pipe.load_lora_weights("manual.safetensors") | |
pipe_i2i = StableDiffusionXLImg2ImgPipeline.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
scheduler=scheduler, | |
use_auth_token=auth_token | |
) | |
pipe=pipe.to("cuda") | |
pipe_i2i=pipe_i2i.to("cuda") | |
token_num=65 | |
unaestheticXLv31="" | |
embeddings_dict = {} | |
with safe_open("unaestheticXLv31.safetensors", framework="pt") as f: | |
for k in f.keys(): | |
embeddings_dict[k] = f.get_tensor(k) | |
for i in range(len(embeddings_dict["clip_l"])): | |
token = f"sksd{chr(token_num)}" | |
token_num+=1 | |
unaestheticXLv31 += token | |
pipe.tokenizer.add_tokens(token) | |
token_id = pipe.tokenizer.convert_tokens_to_ids(token) | |
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer)) | |
pipe.text_encoder_2.resize_token_embeddings(len(pipe.tokenizer)) | |
pipe.text_encoder.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_l"][i] | |
pipe.text_encoder_2.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_g"][i] | |
unaestheticXLv1="" | |
embeddings_dict = {} | |
with safe_open("unaestheticXLv1.safetensors", framework="pt") as f: | |
for k in f.keys(): | |
embeddings_dict[k] = f.get_tensor(k) | |
for i in range(len(embeddings_dict["clip_l"])): | |
token = f"sksd{chr(token_num)}" | |
token_num+=1 | |
unaestheticXLv1 += token | |
pipe.tokenizer.add_tokens(token) | |
token_id = pipe.tokenizer.convert_tokens_to_ids(token) | |
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer)) | |
pipe.text_encoder_2.resize_token_embeddings(len(pipe.tokenizer)) | |
pipe.text_encoder.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_l"][i] | |
pipe.text_encoder_2.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_g"][i] | |
unaestheticXLv13="" | |
embeddings_dict = {} | |
with safe_open("unaestheticXLv13.safetensors", framework="pt") as f: | |
for k in f.keys(): | |
embeddings_dict[k] = f.get_tensor(k) | |
for i in range(len(embeddings_dict["clip_l"])): | |
token = f"sksd{chr(token_num)}" | |
unaestheticXLv13 += token | |
token_num+=1 | |
pipe.tokenizer.add_tokens(token) | |
token_id = pipe.tokenizer.convert_tokens_to_ids(token) | |
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer)) | |
pipe.text_encoder_2.resize_token_embeddings(len(pipe.tokenizer)) | |
pipe.text_encoder.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_l"][i] | |
pipe.text_encoder_2.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_g"][i] | |
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , | |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2], | |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
requires_pooled=[False, True]) | |
def error_str(error, title="Error"): | |
return f"""#### {title} | |
{error}""" if error else "" | |
def inference(prompt, guidance, steps, image_size="Landscape", seed=0, img=None, strength=0.5, neg_prompt="", disable_auto_prompt_correction=False, image_style="Animetic", original_model=False): | |
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None | |
prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt,disable_auto_prompt_correction) | |
if(image_size=="Portrait"): | |
height=1344 | |
width=768 | |
elif(image_size=="Landscape"): | |
height=768 | |
width=1344 | |
else: | |
height=1024 | |
width=1024 | |
print(prompt,neg_prompt) | |
try: | |
if img is not None: | |
return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None | |
else: | |
return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None | |
except Exception as e: | |
return None, error_str(e) | |
def auto_prompt_correction(prompt_ui,neg_prompt_ui,disable_auto_prompt_correction): | |
# auto prompt correction | |
prompt=str(prompt_ui) | |
neg_prompt=str(neg_prompt_ui) | |
prompt=prompt.lower() | |
neg_prompt=neg_prompt.lower() | |
if(disable_auto_prompt_correction): | |
return prompt, neg_prompt | |
if(prompt=="" and neg_prompt==""): | |
prompt="1girl++, sunflowers, brown bob hair, brown eyes, sky" | |
neg_prompt=f"({unaestheticXLv31})--" | |
return prompt, neg_prompt | |
splited_prompt=prompt.replace(","," ").replace("_"," ").replace("+"," ").split(" ") | |
human_words=["1girl","girl","maid","maids","female","1woman","woman","girls","2girls","3girls","4girls","5girls","a couple of girls","women","1boy","boy","boys","a couple of boys","2boys","male","1man","1handsome","1bishounen","man","men","guy","guys"] | |
for word in human_words: | |
if( word in splited_prompt): | |
prompt=f"{prompt}" | |
neg_prompt=f"{neg_prompt},({unaestheticXLv31})--" | |
return prompt, neg_prompt | |
animal_words=["cat","dog","bird","pigeon","rabbit","bunny","horse"] | |
for word in animal_words: | |
if( word in splited_prompt): | |
prompt=f"a {prompt}, 4k, detailed" | |
neg_prompt=f"{neg_prompt},({unaestheticXLv31})--" | |
return prompt, neg_prompt | |
background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo", "kyoto", "nara", "shibuya", "shinjuku"] | |
for word in background_words: | |
if( word in splited_prompt): | |
prompt=f"{prompt}, highly detailed" | |
neg_prompt=f"girl, (((deformed))), {neg_prompt}, girl, boy, photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text" | |
return prompt, neg_prompt | |
return prompt,neg_prompt | |
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator): | |
conditioning, pooled = compel([prompt, neg_prompt]) | |
result = pipe( | |
prompt_embeds=conditioning[0:1], | |
pooled_prompt_embeds=pooled[0:1], | |
negative_prompt_embeds=conditioning[1:2], | |
negative_pooled_prompt_embeds=pooled[1:2], | |
num_inference_steps = int(steps), | |
guidance_scale = guidance, | |
width = width, | |
height = height, | |
generator = generator) | |
return result.images[0] | |
def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator): | |
ratio = min(height / img.height, width / img.width) | |
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) | |
result = pipe_i2i( | |
prompt, | |
negative_prompt = neg_prompt, | |
image = img, | |
num_inference_steps = int(steps), | |
strength = strength, | |
guidance_scale = guidance, | |
generator = generator) | |
return result.images[0] | |
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
f""" | |
<div class="main-div"> | |
<div> | |
<h1>Emi Demo</h1> | |
</div> | |
<p> | |
Demo for <a href="https://huggingface.co/aipicasso/emi">Emi</a><br> | |
</p> | |
<p> | |
サンプル: そのままGenerateボタンを押してください。<br> | |
sample : Click "Generate" button without any prompts. | |
</p> | |
<p> | |
sample prompt1 : 1girl++, smile, purple long hair, purple eyes, stars | |
</p> | |
<p> | |
sample prompt2 : 1boy++, white wavy hair, red eyes, white shirt, school | |
</p> | |
Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU 🥶</b>. For faster inference it is recommended to <b>upgrade to GPU in <a href='https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0/settings'>Settings</a></b>"} <br> | |
<a style="display:inline-block" href="https://huggingface.co/spaces/aipicasso/emi-latest-demo?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> to say goodbye from waiting for the generating. | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=55): | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="[your prompt]") | |
generate = gr.Button(value="Generate") | |
image_out = gr.Image(height=768,width=1344) | |
error_output = gr.Markdown() | |
with gr.Column(scale=45): | |
with gr.Tab("Options"): | |
with gr.Group(): | |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") | |
disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.") | |
with gr.Row(): | |
image_size=gr.Radio(["Portrait","Landscape","Square"]) | |
image_size.show_label=False | |
image_size.value="Square" | |
with gr.Row(): | |
guidance = gr.Slider(label="Guidance scale", value=10, maximum=25) | |
steps = gr.Slider(label="Steps", value=20, minimum=2, maximum=75, step=1) | |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) | |
with gr.Tab("Image to image"): | |
with gr.Group(): | |
image = gr.Image(label="Image", height=256, tool="editor", type="pil") | |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) | |
inputs = [prompt, guidance, steps, image_size, seed, image, strength, neg_prompt, disable_auto_prompt_correction] | |
outputs = [image_out, error_output] | |
prompt.submit(inference, inputs=inputs, outputs=outputs) | |
generate.click(inference, inputs=inputs, outputs=outputs) | |
demo.queue(concurrency_count=1) | |
demo.launch() |