V1 / models.py
michaelapplydesign's picture
up
8f75876
raw
history blame
1.78 kB
import logging
from typing import List
import torch
import numpy as np
from PIL import Image
from helpers import flush, postprocess_image_masking, convolution
from pipelines import get_inpainting_pipeline
LOGGING = logging.getLogger(__name__)
@torch.inference_mode()
def make_inpainting(positive_prompt: str,
image: Image,
mask_image: np.ndarray,
negative_prompt: str,
num_of_images: int,
resolution:int ) -> List[Image.Image]:
print("make_inpainting", positive_prompt, image, mask_image, negative_prompt, num_of_images, resolution)
"""Method to make inpainting
Args:
positive_prompt (str): positive prompt string
image (Image): input image
mask_image (np.ndarray): mask image
negative_prompt (str, optional): negative prompt string. Defaults to "".
Returns:
List[Image.Image]: list of generated images
"""
pipe = get_inpainting_pipeline()
mask_image = Image.fromarray((mask_image * 255).astype(np.uint8))
mask_image_postproc = convolution(mask_image)
flush()
retList=[]
for x in range(num_of_images):
resp = pipe(image=image,
mask_image=mask_image,
prompt=positive_prompt,
negative_prompt=negative_prompt,
num_inference_steps=50,
height=resolution,
width=resolution,
)
print("RESP !!!!",resp)
generated_image = resp.images[0]
generated_image = postprocess_image_masking(generated_image, image, mask_image_postproc)
retList.append(generated_image)
return retList