Spaces:
Sleeping
Sleeping
import logging | |
from typing import List | |
import torch | |
import numpy as np | |
from PIL import Image | |
from helpers import flush, postprocess_image_masking, convolution | |
from pipelines import get_inpainting_pipeline | |
LOGGING = logging.getLogger(__name__) | |
def make_inpainting(positive_prompt: str, | |
image: Image, | |
mask_image: np.ndarray, | |
negative_prompt: str, | |
num_of_images: int, | |
resolution:int ) -> List[Image.Image]: | |
print("make_inpainting", positive_prompt, image, mask_image, negative_prompt, num_of_images, resolution) | |
"""Method to make inpainting | |
Args: | |
positive_prompt (str): positive prompt string | |
image (Image): input image | |
mask_image (np.ndarray): mask image | |
negative_prompt (str, optional): negative prompt string. Defaults to "". | |
Returns: | |
List[Image.Image]: list of generated images | |
""" | |
pipe = get_inpainting_pipeline() | |
mask_image = Image.fromarray((mask_image * 255).astype(np.uint8)) | |
mask_image_postproc = convolution(mask_image) | |
flush() | |
retList=[] | |
for x in range(num_of_images): | |
resp = pipe(image=image, | |
mask_image=mask_image, | |
prompt=positive_prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=50, | |
height=resolution, | |
width=resolution, | |
) | |
print("RESP !!!!",resp) | |
generated_image = resp.images[0] | |
generated_image = postprocess_image_masking(generated_image, image, mask_image_postproc) | |
retList.append(generated_image) | |
return retList | |