Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,122 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
-
import spaces
|
4 |
-
from transformers import GemmaTokenizer, AutoModelForCausalLM
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
from threading import Thread
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
10 |
-
|
11 |
-
|
12 |
-
DESCRIPTION = '''
|
13 |
-
<div>
|
14 |
-
<h1 style="text-align: center;">Meta Llama3 8B</h1>
|
15 |
-
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
|
16 |
-
<p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
|
17 |
-
<p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
|
18 |
-
</div>
|
19 |
-
'''
|
20 |
-
|
21 |
-
LICENSE = """
|
22 |
-
<p/>
|
23 |
-
|
24 |
-
---
|
25 |
-
Built with Meta Llama 3
|
26 |
-
"""
|
27 |
-
|
28 |
-
PLACEHOLDER = """
|
29 |
-
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
30 |
-
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
|
31 |
-
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
|
32 |
-
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
|
33 |
-
</div>
|
34 |
-
"""
|
35 |
-
|
36 |
-
|
37 |
-
css = """
|
38 |
-
h1 {
|
39 |
-
text-align: center;
|
40 |
-
display: block;
|
41 |
-
}
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
background: #1565c0;
|
47 |
-
border-radius: 100vh;
|
48 |
-
}
|
49 |
-
"""
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
54 |
terminators = [
|
55 |
-
|
56 |
-
|
57 |
]
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
message (str): The input message.
|
69 |
-
history (list): The conversation history used by ChatInterface.
|
70 |
-
temperature (float): The temperature for generating the response.
|
71 |
-
max_new_tokens (int): The maximum number of new tokens to generate.
|
72 |
-
Returns:
|
73 |
-
str: The generated response.
|
74 |
-
"""
|
75 |
-
conversation = []
|
76 |
-
for user, assistant in history:
|
77 |
-
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
78 |
-
conversation.append({"role": "user", "content": message})
|
79 |
|
80 |
-
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
|
81 |
-
|
82 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
generate_kwargs = dict(
|
85 |
-
|
86 |
streamer=streamer,
|
87 |
-
max_new_tokens=
|
88 |
do_sample=True,
|
89 |
temperature=temperature,
|
|
|
|
|
90 |
eos_token_id=terminators,
|
91 |
)
|
92 |
-
|
93 |
if temperature == 0:
|
94 |
generate_kwargs['do_sample'] = False
|
95 |
-
|
96 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
97 |
t.start()
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
)
|
141 |
-
|
142 |
-
gr.Markdown(LICENSE)
|
143 |
-
|
144 |
-
if __name__ == "__main__":
|
145 |
-
demo.launch()
|
146 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
AutoModelForCausalLM,
|
5 |
+
AutoTokenizer,
|
6 |
+
TextIteratorStreamer,
|
7 |
+
BitsAndBytesConfig,
|
8 |
+
)
|
9 |
import os
|
|
|
|
|
|
|
10 |
from threading import Thread
|
11 |
+
import spaces
|
12 |
+
import time
|
13 |
|
14 |
+
token = os.environ["HF_TOKEN"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
quantization_config = BitsAndBytesConfig(
|
17 |
+
load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16
|
18 |
+
)
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
"chheplo/sft_8b_2_llama3", quantization_config=quantization_config, token=token
|
22 |
+
)
|
23 |
+
tok = AutoTokenizer.from_pretrained("chheplo/sft_8b_2_llama3", token=token)
|
24 |
terminators = [
|
25 |
+
tok.eos_token_id,
|
26 |
+
tok.convert_tokens_to_ids("<|eot_id|>")
|
27 |
]
|
28 |
|
29 |
+
if torch.cuda.is_available():
|
30 |
+
device = torch.device("cuda")
|
31 |
+
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
|
32 |
+
else:
|
33 |
+
device = torch.device("cpu")
|
34 |
+
print("Using CPU")
|
35 |
+
|
36 |
+
# model = model.to(device)
|
37 |
+
# Dispatch Errors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
|
|
|
|
|
|
39 |
|
40 |
+
@spaces.GPU()
|
41 |
+
def chat(message, history, temperature,do_sample, max_tokens):
|
42 |
+
prompt_template = """
|
43 |
+
You are a helpful Agricultural assistant for farmers. You are given the following input. Please complete the response briefly.
|
44 |
+
## Question:
|
45 |
+
{}
|
46 |
+
|
47 |
+
## Response:
|
48 |
+
{}"""
|
49 |
+
start_time = time.time()
|
50 |
+
chat = []
|
51 |
+
# for item in history:
|
52 |
+
# chat.append({"role": "user", "content": item[0]})
|
53 |
+
# if item[1] is not None:
|
54 |
+
# chat.append({"role": "assistant", "content": item[1]})
|
55 |
+
# chat.append({"role": "user", "content": message})
|
56 |
+
# messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
57 |
+
|
58 |
+
model_inputs = tok(prompt_template.format(
|
59 |
+
message, #input
|
60 |
+
"" # response
|
61 |
+
), return_tensors="pt").to(device)
|
62 |
+
streamer = TextIteratorStreamer(
|
63 |
+
tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
64 |
+
)
|
65 |
generate_kwargs = dict(
|
66 |
+
model_inputs,
|
67 |
streamer=streamer,
|
68 |
+
max_new_tokens=max_tokens,
|
69 |
do_sample=True,
|
70 |
temperature=temperature,
|
71 |
+
repetition_penalty=1.2,
|
72 |
+
use_cache=False,
|
73 |
eos_token_id=terminators,
|
74 |
)
|
75 |
+
|
76 |
if temperature == 0:
|
77 |
generate_kwargs['do_sample'] = False
|
78 |
+
|
79 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
80 |
t.start()
|
81 |
|
82 |
+
partial_text = ""
|
83 |
+
first_token_time = None
|
84 |
+
for new_text in streamer:
|
85 |
+
if not first_token_time:
|
86 |
+
first_token_time = time.time() - start_time
|
87 |
+
partial_text += new_text
|
88 |
+
yield partial_text
|
89 |
+
|
90 |
+
total_time = time.time() - start_time
|
91 |
+
tokens = len(tok.tokenize(partial_text))
|
92 |
+
tokens_per_second = tokens / total_time if total_time > 0 else 0
|
93 |
+
|
94 |
+
timing_info = f"\n\nTime taken to first token: {first_token_time:.2f} seconds\nTokens per second: {tokens_per_second:.2f}"
|
95 |
+
yield partial_text + timing_info
|
96 |
+
|
97 |
+
|
98 |
+
demo = gr.ChatInterface(
|
99 |
+
fn=chat,
|
100 |
+
examples=[["I'm a farmer from Odisha, how do I take care of whitefly in my cotton crop?"]],
|
101 |
+
# multimodal=False,
|
102 |
+
additional_inputs_accordion=gr.Accordion(
|
103 |
+
label="⚙️ Parameters", open=False, render=False
|
104 |
+
),
|
105 |
+
additional_inputs=[
|
106 |
+
gr.Slider(
|
107 |
+
minimum=0, maximum=1, step=0.1, value=0.5, label="Temperature", render=False
|
108 |
+
),
|
109 |
+
gr.Checkbox(label="Sampling",value=False),
|
110 |
+
gr.Slider(
|
111 |
+
minimum=128,
|
112 |
+
maximum=4096,
|
113 |
+
step=1,
|
114 |
+
value=512,
|
115 |
+
label="Max new tokens",
|
116 |
+
render=False,
|
117 |
+
),
|
118 |
+
],
|
119 |
+
stop_btn="Stop Generation",
|
120 |
+
title="Chat With LLMs",
|
121 |
+
description="Now Running [KissanAI/llama3-8b-dhenu-0.1-sft-16bit](https://huggingface.co/KissanAI/llama3-8b-dhenu-0.1-sft-16bit) in 4bit")
|
122 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|