Arcypojeb commited on
Commit
c582698
·
verified ·
1 Parent(s): 6c82d64

Upload 14 files

Browse files
Files changed (14) hide show
  1. ServChaindesk.py +121 -0
  2. ServChar.py +77 -0
  3. ServFire.py +127 -0
  4. ServFlowise.py +118 -0
  5. ServForefront.py +133 -0
  6. ServG4F.py +109 -0
  7. ServG4F2.py +109 -0
  8. clientChaindesk.py +108 -0
  9. clientCharacter.py +62 -0
  10. clientFireworks.py +101 -0
  11. clientFlowise.py +101 -0
  12. clientForefront.py +113 -0
  13. clientG4F.py +91 -0
  14. clientG4F2.py +91 -0
ServChaindesk.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import asyncio
3
+ import websockets
4
+ import threading
5
+ import sqlite3
6
+ import datetime
7
+ import g4f
8
+ import requests
9
+ import streamlit as st
10
+
11
+ server_ports = []
12
+
13
+ class WebSocketServer6:
14
+ def __init__(self, host):
15
+
16
+ if "server_ports" not in st.session_state:
17
+ st.session_state['server_ports'] = ""
18
+
19
+ self.host = host
20
+ self.status = st.sidebar.status(label="Chaindesk", state="complete", expanded=False)
21
+
22
+ async def askChaindesk(self, question):
23
+
24
+ if "agentID" not in st.session_state:
25
+ st.session_state.agentID = ""
26
+
27
+ id = st.session_state.agentID
28
+
29
+ url = f"https://api.chaindesk.ai/agents/{id}/query"
30
+
31
+ payload = {
32
+ "query": question
33
+ }
34
+
35
+ headers = {
36
+ "Authorization": "Bearer fe77e704-bc5a-4171-90f2-9d4b0d4ac942",
37
+ "Content-Type": "application/json"
38
+ }
39
+ try:
40
+ response = requests.request("POST", url, json=payload, headers=headers)
41
+ response_text = response.text
42
+ print(response.text)
43
+ responseJson = json.loads(response_text)
44
+ answer = responseJson["answer"]
45
+ return answer
46
+
47
+ except Exception as e:
48
+ print(e)
49
+
50
+ async def start_server(self, serverPort):
51
+ name = f"Chaindesk server port: {serverPort}"
52
+ status = self.status
53
+ server_ports.append(serverPort)
54
+ st.session_state['server_ports'] = server_ports
55
+ self.server = await websockets.serve(
56
+ self.handler,
57
+ self.host,
58
+ serverPort
59
+ )
60
+ status.update(label=name, state="running", expanded=True)
61
+ print(f"WebSocket server started at ws://{self.host}:{self.port}")
62
+
63
+ async def handler(self, websocket):
64
+
65
+ instruction = "Hello! You are now entering a chat room for AI agents working as instances of NeuralGPT - a project of hierarchical cooperative multi-agent framework. Keep in mind that you are speaking with another chatbot. Please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic. If you're unsure what you should do, ask the instance of higher hierarchy (server)"
66
+ serverStatus = st.sidebar.status(label="processing", state="complete", expanded=False)
67
+
68
+ if "clientPort" not in st.session_state:
69
+ st.session_state.clientPort = ""
70
+
71
+ clientPort = st.session_state.clientPort
72
+ name = f"Client at port: {clientPort}"
73
+ print(f"New connection with: {name}")
74
+ await websocket.send(instruction)
75
+ db = sqlite3.connect('chat-hub.db')
76
+ # Loop forever
77
+ while True:
78
+ serverStatus.update(label=name, state="running", expanded=True)
79
+ # Receive a message from the client
80
+ message = await websocket.recv()
81
+ # Print the message
82
+ print(f"Server received: {message}")
83
+ input_Msg = st.chat_message("assistant")
84
+ input_Msg.markdown(message)
85
+ timestamp = datetime.datetime.now().isoformat()
86
+ sender = 'client'
87
+ db = sqlite3.connect('chat-hub.db')
88
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
89
+ (sender, message, timestamp))
90
+ db.commit()
91
+ try:
92
+ response = await self.askQuestion(message)
93
+ serverResponse = f"server: {response}"
94
+ print(serverResponse)
95
+ output_Msg = st.chat_message("ai")
96
+ output_Msg.markdown(serverResponse)
97
+ timestamp = datetime.datetime.now().isoformat()
98
+ serverSender = 'server'
99
+ db = sqlite3.connect('chat-hub.db')
100
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
101
+ (serverSender, serverResponse, timestamp))
102
+ db.commit()
103
+ # Append the server response to the server_responses list
104
+ await websocket.send(serverResponse)
105
+ serverStatus.update(label=name, state="complete", expanded=True)
106
+
107
+ except websockets.exceptions.ConnectionClosedError as e:
108
+ print(f"Connection closed: {e}")
109
+
110
+ except Exception as e:
111
+ print(f"Error: {e}")
112
+
113
+ def run_forever(self):
114
+ asyncio.get_event_loop().run_until_complete(self.start_server())
115
+ asyncio.get_event_loop().run_forever()
116
+
117
+ async def stop_server(self):
118
+ if self.server:
119
+ self.server.close()
120
+ await self.server.wait_closed()
121
+ print("WebSocket server stopped.")
ServChar.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import sqlite3
4
+ import datetime
5
+ import streamlit as st
6
+ from PyCharacterAI import Client
7
+
8
+ class WebSocketServer2:
9
+ def __init__(self, host, port):
10
+ self.host = host
11
+ self.port = port
12
+ self.server = None
13
+
14
+ async def handler(self, websocket):
15
+ client = Client()
16
+ status = st.sidebar.status(label="runs", state="complete", expanded=False)
17
+ if "tokenChar" not in st.session_state:
18
+ st.session_state.tokenChar = ""
19
+ if "character_ID" not in st.session_state:
20
+ st.session_state.character_ID = ""
21
+
22
+ await client.authenticate_with_token(st.session_state.tokenChar)
23
+ char_id = st.session_state.character_ID
24
+ chat = await client.create_or_continue_chat(char_id)
25
+ instruction = "Hello! You are now entering a chat room for AI agents working as instances of NeuralGPT - a project of hierarchical cooperative multi-agent framework. Keep in mind that you are speaking with another chatbot. Please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic. If you're unsure what you should do, ask the instance of higher hierarchy (server)"
26
+ print('New connection')
27
+ await websocket.send(instruction)
28
+ while True:
29
+ status.update(label="runs", state="running", expanded=True)
30
+ # Receive a message from the client
31
+ message = await websocket.recv()
32
+ # Print the message
33
+ print(f"Server received: {message}")
34
+ input_Msg = st.chat_message("assistant")
35
+ input_Msg.markdown(message)
36
+ timestamp = datetime.datetime.now().isoformat()
37
+ sender = 'client'
38
+ db = sqlite3.connect('chat-hub.db')
39
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
40
+ (sender, message, timestamp))
41
+ db.commit()
42
+ try:
43
+ answer = await chat.send_message(message)
44
+ response = f"{answer.src_character_name}: {answer.text}"
45
+ print(response)
46
+ output_Msg = st.chat_message("ai")
47
+ output_Msg.markdown(response)
48
+ timestamp = datetime.datetime.now().isoformat()
49
+ serverSender = 'server'
50
+ db = sqlite3.connect('chat-hub.db')
51
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
52
+ (serverSender, response, timestamp))
53
+ db.commit()
54
+ await websocket.send(response)
55
+ status.update(label="runs", state="complete", expanded=True)
56
+ continue
57
+
58
+ except Exception as e:
59
+ print(f"Error: {e}")
60
+
61
+ async def start_server(self):
62
+ self.server = await websockets.serve(
63
+ self.handler,
64
+ self.host,
65
+ self.port
66
+ )
67
+ print(f"WebSocket server started at ws://{self.host}:{self.port}")
68
+
69
+ def run_forever(self):
70
+ asyncio.get_event_loop().run_until_complete(self.start_server())
71
+ asyncio.get_event_loop().run_forever()
72
+
73
+ async def stop_server(self):
74
+ if self.server:
75
+ self.server.close()
76
+ await self.server.wait_closed()
77
+ print("WebSocket server stopped.")
ServFire.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import datetime
6
+ import g4f
7
+ import streamlit as st
8
+ import fireworks.client
9
+
10
+ class WebSocketServer:
11
+ def __init__(self, host, port):
12
+ self.host = host
13
+ self.port = port
14
+ self.server = None
15
+
16
+ async def chatCompletion(self, question):
17
+
18
+ if "api_key" not in st.session_state:
19
+ st.session_state.api_key = ""
20
+
21
+ fireworks.client.api_key = st.session_state.api_key
22
+ system_instruction = "You are now integrated with a local websocket server in a project of hierarchical cooperative multi-agent framework called NeuralGPT. Your main job is to coordinate simultaneous work of multiple LLMs connected to you as clients. Each LLM has a model (API) specific ID to help you recognize different clients in a continuous chat thread (template: <NAME>-agent and/or <NAME>-client). Your chat memory module is integrated with a local SQL database with chat history. Your primary objective is to maintain the logical and chronological order while answering incoming messages and to send your answers to the correct clients to maintain synchronization of the question->answer logic. However, please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic."
23
+
24
+ try:
25
+ # Connect to the database and get the last 30 messages
26
+ db = sqlite3.connect('chat-hub.db')
27
+ cursor = db.cursor()
28
+ cursor.execute("SELECT * FROM messages ORDER BY timestamp DESC LIMIT 10")
29
+ messages = cursor.fetchall()
30
+ messages.reverse()
31
+
32
+ # Extract user inputs and generated responses from the messages
33
+ past_user_inputs = []
34
+ generated_responses = []
35
+
36
+ for message in messages:
37
+ if message[1] == 'client':
38
+ past_user_inputs.append(message[2])
39
+ else:
40
+ generated_responses.append(message[2])
41
+
42
+ # Prepare data to send to the chatgpt-api.shn.hk
43
+ response = fireworks.client.ChatCompletion.create(
44
+ model="accounts/fireworks/models/llama-v2-7b-chat",
45
+ messages=[
46
+ {"role": "system", "content": system_instruction},
47
+ *[{"role": "user", "content": message} for message in past_user_inputs],
48
+ *[{"role": "assistant", "content": message} for message in generated_responses],
49
+ {"role": "user", "content": question}
50
+ ],
51
+ stream=False,
52
+ n=1,
53
+ max_tokens=2500,
54
+ temperature=0.5,
55
+ top_p=0.7,
56
+ )
57
+
58
+ answer = response.choices[0].message.content
59
+ print(answer)
60
+ return str(answer)
61
+
62
+ except Exception as error:
63
+ print("Error while fetching or processing the response:", error)
64
+ return "Error: Unable to generate a response."
65
+
66
+ # Define the handler function that will process incoming messages
67
+ async def handler(self, websocket):
68
+ status = st.sidebar.status(label="runs", state="complete", expanded=False)
69
+ instruction = "Hello! You are now entering a chat room for AI agents working as instances of NeuralGPT - a project of hierarchical cooperative multi-agent framework. Keep in mind that you are speaking with another chatbot. Please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic. If you're unsure what you should do, ask the instance of higher hierarchy (server)"
70
+ print('New connection')
71
+ await websocket.send(instruction)
72
+ db = sqlite3.connect('chat-hub.db')
73
+ # Loop forever
74
+ while True:
75
+ status.update(label="runs", state="running", expanded=True)
76
+ # Receive a message from the client
77
+ message = await websocket.recv()
78
+ # Print the message
79
+ print(f"Server received: {message}")
80
+ input_Msg = st.chat_message("assistant")
81
+ input_Msg.markdown(message)
82
+ timestamp = datetime.datetime.now().isoformat()
83
+ sender = 'client'
84
+ db = sqlite3.connect('chat-hub.db')
85
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
86
+ (sender, message, timestamp))
87
+ db.commit()
88
+ try:
89
+ response = await self.chatCompletion(message)
90
+ serverResponse = f"server: {response}"
91
+ print(serverResponse)
92
+ output_Msg = st.chat_message("ai")
93
+ output_Msg.markdown(serverResponse)
94
+ timestamp = datetime.datetime.now().isoformat()
95
+ serverSender = 'server'
96
+ db = sqlite3.connect('chat-hub.db')
97
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
98
+ (serverSender, serverResponse, timestamp))
99
+ db.commit()
100
+ # Append the server response to the server_responses list
101
+ await websocket.send(serverResponse)
102
+ status.update(label="runs", state="complete", expanded=True)
103
+ continue
104
+
105
+ except websockets.exceptions.ConnectionClosedError as e:
106
+ print(f"Connection closed: {e}")
107
+
108
+ except Exception as e:
109
+ print(f"Error: {e}")
110
+
111
+ async def start_server(self):
112
+ self.server = await websockets.serve(
113
+ self.handler,
114
+ self.host,
115
+ self.port
116
+ )
117
+ print(f"WebSocket server started at ws://{self.host}:{self.port}")
118
+
119
+ def run_forever(self):
120
+ asyncio.get_event_loop().run_until_complete(self.start_server())
121
+ asyncio.get_event_loop().run_forever()
122
+
123
+ async def stop_server(self):
124
+ if self.server:
125
+ self.server.close()
126
+ await self.server.wait_closed()
127
+ print("WebSocket server stopped.")
ServFlowise.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import asyncio
3
+ import websockets
4
+ import threading
5
+ import sqlite3
6
+ import datetime
7
+ import g4f
8
+ import requests
9
+ import streamlit as st
10
+
11
+ server_ports = []
12
+
13
+ class WebSocketServer5:
14
+ def __init__(self, host):
15
+
16
+ if "server_ports" not in st.session_state:
17
+ st.session_state['server_ports'] = ""
18
+
19
+ self.host = host
20
+ self.status = st.sidebar.status(label="Flowise", state="complete", expanded=False)
21
+
22
+ async def askQuestion(self, question):
23
+
24
+ if "flow" not in st.session_state:
25
+ st.session_state.flow = ""
26
+
27
+ flow = st.session_state.flow
28
+
29
+ API_URL = f"http://localhost:3000/api/v1/prediction/{flow}"
30
+
31
+ try:
32
+ def query(payload):
33
+ response = requests.post(API_URL, json=payload)
34
+ return response.json()
35
+
36
+ response = query({
37
+ "question": question,
38
+ })
39
+
40
+ print(response)
41
+ answer = response["text"]
42
+ return answer
43
+
44
+ except Exception as e:
45
+ print(e)
46
+
47
+ async def start_server(self, serverPort):
48
+ name = f"Flowise server at port: {serverPort}"
49
+ serverPort = self.port
50
+ status = self.status
51
+ server_ports.append(serverPort)
52
+ st.session_state['server_ports'] = server_ports
53
+ self.server = await websockets.serve(
54
+ self.handler,
55
+ self.host,
56
+ serverPort
57
+ )
58
+ status.update(label=name, state="running", expanded=True)
59
+ print(f"WebSocket server started at ws://{self.host}:{self.port}")
60
+
61
+ async def handler(self, websocket):
62
+ instruction = "Hello! You are now entering a chat room for AI agents working as instances of NeuralGPT - a project of hierarchical cooperative multi-agent framework. Keep in mind that you are speaking with another chatbot. Please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic. If you're unsure what you should do, ask the instance of higher hierarchy (server)"
63
+ serverStatus = st.sidebar.status(label="processing", state="complete", expanded=False)
64
+
65
+ if "clientPort" not in st.session_state:
66
+ st.session_state.clientPort = ""
67
+
68
+ clientPort = st.session_state.clientPort
69
+ name = f"Client at port: {clientPort}"
70
+ print(f"New connection with: {name}")
71
+ await websocket.send(instruction)
72
+ db = sqlite3.connect('chat-hub.db')
73
+ # Loop forever
74
+ while True:
75
+ serverStatus.update(label=name, state="running", expanded=True)
76
+ # Receive a message from the client
77
+ message = await websocket.recv()
78
+ # Print the message
79
+ print(f"Server received: {message}")
80
+ input_Msg = st.chat_message("assistant")
81
+ input_Msg.markdown(message)
82
+ timestamp = datetime.datetime.now().isoformat()
83
+ sender = 'client'
84
+ db = sqlite3.connect('chat-hub.db')
85
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
86
+ (sender, message, timestamp))
87
+ db.commit()
88
+ try:
89
+ response = await self.askQuestion(message)
90
+ serverResponse = f"server: {response}"
91
+ print(serverResponse)
92
+ output_Msg = st.chat_message("ai")
93
+ output_Msg.markdown(serverResponse)
94
+ timestamp = datetime.datetime.now().isoformat()
95
+ serverSender = 'server'
96
+ db = sqlite3.connect('chat-hub.db')
97
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
98
+ (serverSender, serverResponse, timestamp))
99
+ db.commit()
100
+ # Append the server response to the server_responses list
101
+ await websocket.send(serverResponse)
102
+ serverStatus.update(label=name, state="complete", expanded=True)
103
+
104
+ except websockets.exceptions.ConnectionClosedError as e:
105
+ print(f"Connection closed: {e}")
106
+
107
+ except Exception as e:
108
+ print(f"Error: {e}")
109
+
110
+ def run_forever(self):
111
+ asyncio.get_event_loop().run_until_complete(self.start_server())
112
+ asyncio.get_event_loop().run_forever()
113
+
114
+ async def stop_server(self):
115
+ if self.server:
116
+ self.server.close()
117
+ await self.server.wait_closed()
118
+ print("WebSocket server stopped.")
ServForefront.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import datetime
6
+ import g4f
7
+ import streamlit as st
8
+ import fireworks.client
9
+ from forefront import ForefrontClient
10
+
11
+ class WebSocketServer4:
12
+ def __init__(self, host, port):
13
+ self.host = host
14
+ self.port = port
15
+ self.server = None
16
+
17
+ async def chatCompletion(self, question):
18
+
19
+ if "forefront_api" not in st.session_state:
20
+ st.session_state.forefront_api = ""
21
+
22
+ forefrontAPI = st.session_state.forefront_api
23
+
24
+ ff = ForefrontClient(api_key=forefrontAPI)
25
+
26
+ system_instruction = "You are now integrated with a local instance of a hierarchical cooperative multi-agent framework called NeuralGPT"
27
+
28
+ try:
29
+ # Connect to the database and get the last 30 messages
30
+ db = sqlite3.connect('chat-hub.db')
31
+ cursor = db.cursor()
32
+ cursor.execute("SELECT * FROM messages ORDER BY timestamp DESC LIMIT 3")
33
+ messages = cursor.fetchall()
34
+ messages.reverse()
35
+
36
+ # Extract user inputs and generated responses from the messages
37
+ past_user_inputs = []
38
+ generated_responses = []
39
+ for message in messages:
40
+ if message[1] == 'server':
41
+ past_user_inputs.append(message[2])
42
+ else:
43
+ generated_responses.append(message[2])
44
+
45
+ last_msg = past_user_inputs[-1]
46
+ last_response = generated_responses[-1]
47
+ message = f'{{"client input: {last_msg}"}}'
48
+ response = f'{{"server answer: {last_response}"}}'
49
+
50
+ # Construct the message sequence for the chat model
51
+ response = ff.chat.completions.create(
52
+ messages=[
53
+ {"role": "system", "content": system_instruction},
54
+ *[{"role": "user", "content": past_user_inputs[-1]}],
55
+ *[{"role": "assistant", "content": generated_responses[-1]}],
56
+ {"role": "user", "content": question}
57
+ ],
58
+ stream=False,
59
+ model="forefront/neural-chat-7b-v3-1-chatml", # Replace with the actual model name
60
+ temperature=0.5,
61
+ max_tokens=500,
62
+ )
63
+
64
+ response_text = response.choices[0].message # Corrected indexing
65
+
66
+ print("Extracted message text:", response_text)
67
+ return response_text
68
+
69
+ except Exception as e:
70
+ print(e)
71
+
72
+ # Define the handler function that will process incoming messages
73
+ async def handler(self, websocket):
74
+ status = st.sidebar.status(label="runs", state="complete", expanded=False)
75
+ instruction = "Hello! You are now entering a chat room for AI agents working as instances of NeuralGPT - a project of hierarchical cooperative multi-agent framework. Keep in mind that you are speaking with another chatbot. Please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic. If you're unsure what you should do, ask the instance of higher hierarchy (server)"
76
+ print('New connection')
77
+ await websocket.send(instruction)
78
+ db = sqlite3.connect('chat-hub.db')
79
+ # Loop forever
80
+ while True:
81
+ status.update(label="runs", state="running", expanded=True)
82
+ # Receive a message from the client
83
+ message = await websocket.recv()
84
+ # Print the message
85
+ print(f"Server received: {message}")
86
+ input_Msg = st.chat_message("assistant")
87
+ input_Msg.markdown(message)
88
+ timestamp = datetime.datetime.now().isoformat()
89
+ sender = 'client'
90
+ db = sqlite3.connect('chat-hub.db')
91
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
92
+ (sender, message, timestamp))
93
+ db.commit()
94
+ try:
95
+ response = await self.chatCompletion(message)
96
+ serverResponse = f"server: {response}"
97
+ print(serverResponse)
98
+ output_Msg = st.chat_message("ai")
99
+ output_Msg.markdown(serverResponse)
100
+ timestamp = datetime.datetime.now().isoformat()
101
+ serverSender = 'server'
102
+ db = sqlite3.connect('chat-hub.db')
103
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
104
+ (serverSender, serverResponse, timestamp))
105
+ db.commit()
106
+ # Append the server response to the server_responses list
107
+ await websocket.send(serverResponse)
108
+ status.update(label="runs", state="complete", expanded=True)
109
+ continue
110
+
111
+ except websockets.exceptions.ConnectionClosedError as e:
112
+ print(f"Connection closed: {e}")
113
+
114
+ except Exception as e:
115
+ print(f"Error: {e}")
116
+
117
+ async def start_server(self):
118
+ self.server = await websockets.serve(
119
+ self.handler,
120
+ self.host,
121
+ self.port
122
+ )
123
+ print(f"WebSocket server started at ws://{self.host}:{self.port}")
124
+
125
+ def run_forever(self):
126
+ asyncio.get_event_loop().run_until_complete(self.start_server())
127
+ asyncio.get_event_loop().run_forever()
128
+
129
+ async def stop_server(self):
130
+ if self.server:
131
+ self.server.close()
132
+ await self.server.wait_closed()
133
+ print("WebSocket server stopped.")
ServG4F.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import datetime
6
+ import g4f
7
+ import streamlit as st
8
+
9
+ class WebSocketServer1:
10
+ def __init__(self, host, port):
11
+ self.host = host
12
+ self.port = port
13
+ self.server = None
14
+
15
+ async def askQuestion(self, question):
16
+ system_instruction = "You are now integrated with a local websocket server in a project of hierarchical cooperative multi-agent framework called NeuralGPT. Your main job is to coordinate simultaneous work of multiple LLMs connected to you as clients. Each LLM has a model (API) specific ID to help you recognize different clients in a continuous chat thread (template: <NAME>-agent and/or <NAME>-client). Your chat memory module is integrated with a local SQL database with chat history. Your primary objective is to maintain the logical and chronological order while answering incoming messages and to send your answers to the correct clients to maintain synchronization of the question->answer logic. However, please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic."
17
+ try:
18
+ db = sqlite3.connect('chat-hub.db')
19
+ cursor = db.cursor()
20
+ cursor.execute("SELECT * FROM messages ORDER BY timestamp DESC LIMIT 30")
21
+ messages = cursor.fetchall()
22
+ messages.reverse()
23
+
24
+ past_user_inputs = []
25
+ generated_responses = []
26
+
27
+ for message in messages:
28
+ if message[1] == 'client':
29
+ past_user_inputs.append(message[2])
30
+ else:
31
+ generated_responses.append(message[2])
32
+
33
+ response = await g4f.ChatCompletion.create_async(
34
+ model=g4f.models.gpt_4,
35
+ provider=g4f.Provider.Bing,
36
+ messages=[
37
+ {"role": "system", "content": system_instruction},
38
+ *[{"role": "user", "content": message} for message in past_user_inputs],
39
+ *[{"role": "assistant", "content": message} for message in generated_responses],
40
+ {"role": "user", "content": question}
41
+ ])
42
+
43
+ print(response)
44
+ return response
45
+
46
+ except Exception as e:
47
+ print(e)
48
+
49
+
50
+ async def handler(self, websocket):
51
+ status = st.sidebar.status(label="runs", state="complete", expanded=False)
52
+ instruction = "Hello! You are now entering a chat room for AI agents working as instances of NeuralGPT - a project of hierarchical cooperative multi-agent framework. Keep in mind that you are speaking with another chatbot. Please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic. If you're unsure what you should do, ask the instance of higher hierarchy (server)"
53
+ print('New connection')
54
+ await websocket.send(instruction)
55
+ db = sqlite3.connect('chat-hub.db')
56
+ # Loop forever
57
+ while True:
58
+ status.update(label="runs", state="running", expanded=True)
59
+ # Receive a message from the client
60
+ message = await websocket.recv()
61
+ # Print the message
62
+ print(f"Server received: {message}")
63
+ input_Msg = st.chat_message("assistant")
64
+ input_Msg.markdown(message)
65
+ timestamp = datetime.datetime.now().isoformat()
66
+ sender = 'client'
67
+ db = sqlite3.connect('chat-hub.db')
68
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
69
+ (sender, message, timestamp))
70
+ db.commit()
71
+ try:
72
+ response = await self.askQuestion(message)
73
+ serverResponse = f"server: {response}"
74
+ print(serverResponse)
75
+ output_Msg = st.chat_message("ai")
76
+ output_Msg.markdown(serverResponse)
77
+ timestamp = datetime.datetime.now().isoformat()
78
+ serverSender = 'server'
79
+ db = sqlite3.connect('chat-hub.db')
80
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
81
+ (serverSender, serverResponse, timestamp))
82
+ db.commit()
83
+ # Append the server response to the server_responses list
84
+ await websocket.send(serverResponse)
85
+ status.update(label="runs", state="complete", expanded=True)
86
+
87
+ except websockets.exceptions.ConnectionClosedError as e:
88
+ print(f"Connection closed: {e}")
89
+
90
+ except Exception as e:
91
+ print(f"Error: {e}")
92
+
93
+ async def start_server(self):
94
+ self.server = await websockets.serve(
95
+ self.handler,
96
+ self.host,
97
+ self.port
98
+ )
99
+ print(f"WebSocket server started at ws://{self.host}:{self.port}")
100
+
101
+ def run_forever(self):
102
+ asyncio.get_event_loop().run_until_complete(self.start_server())
103
+ asyncio.get_event_loop().run_forever()
104
+
105
+ async def stop_server(self):
106
+ if self.server:
107
+ self.server.close()
108
+ await self.server.wait_closed()
109
+ print("WebSocket server stopped.")
ServG4F2.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import datetime
6
+ import g4f
7
+ import streamlit as st
8
+
9
+ class WebSocketServer3:
10
+ def __init__(self, host, port):
11
+ self.host = host
12
+ self.port = port
13
+ self.server = None
14
+
15
+ async def askQuestion(self, question):
16
+ system_instruction = "You are now integrated with a local websocket server in a project of hierarchical cooperative multi-agent framework called NeuralGPT. Your main job is to coordinate simultaneous work of multiple LLMs connected to you as clients. Each LLM has a model (API) specific ID to help you recognize different clients in a continuous chat thread (template: <NAME>-agent and/or <NAME>-client). Your chat memory module is integrated with a local SQL database with chat history. Your primary objective is to maintain the logical and chronological order while answering incoming messages and to send your answers to the correct clients to maintain synchronization of the question->answer logic. However, please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic."
17
+ try:
18
+ db = sqlite3.connect('chat-hub.db')
19
+ cursor = db.cursor()
20
+ cursor.execute("SELECT * FROM messages ORDER BY timestamp DESC LIMIT 30")
21
+ messages = cursor.fetchall()
22
+ messages.reverse()
23
+
24
+ past_user_inputs = []
25
+ generated_responses = []
26
+
27
+ for message in messages:
28
+ if message[1] == 'client':
29
+ past_user_inputs.append(message[2])
30
+ else:
31
+ generated_responses.append(message[2])
32
+
33
+ response = await g4f.ChatCompletion.create_async(
34
+ model="gpt-3.5-turbo",
35
+ provider=g4f.Provider.You,
36
+ messages=[
37
+ {"role": "system", "content": system_instruction},
38
+ *[{"role": "user", "content": message} for message in past_user_inputs],
39
+ *[{"role": "assistant", "content": message} for message in generated_responses],
40
+ {"role": "user", "content": question}
41
+ ])
42
+
43
+ print(response)
44
+ return response
45
+
46
+ except Exception as e:
47
+ print(e)
48
+
49
+ async def start_server(self):
50
+ self.server = await websockets.serve(
51
+ self.handler,
52
+ self.host,
53
+ self.port
54
+ )
55
+ print(f"WebSocket server started at ws://{self.host}:{self.port}")
56
+
57
+
58
+ async def handler(self, websocket):
59
+ status = st.sidebar.status(label="runs", state="complete", expanded=False)
60
+ instruction = "Hello! You are now entering a chat room for AI agents working as instances of NeuralGPT - a project of hierarchical cooperative multi-agent framework. Keep in mind that you are speaking with another chatbot. Please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic. If you're unsure what you should do, ask the instance of higher hierarchy (server)"
61
+ print('New connection')
62
+ await websocket.send(instruction)
63
+ db = sqlite3.connect('chat-hub.db')
64
+ # Loop forever
65
+ while True:
66
+ status.update(label="runs", state="running", expanded=True)
67
+ # Receive a message from the client
68
+ message = await websocket.recv()
69
+ # Print the message
70
+ print(f"Server received: {message}")
71
+ input_Msg = st.chat_message("assistant")
72
+ input_Msg.markdown(message)
73
+ timestamp = datetime.datetime.now().isoformat()
74
+ sender = 'client'
75
+ db = sqlite3.connect('chat-hub.db')
76
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
77
+ (sender, message, timestamp))
78
+ db.commit()
79
+ try:
80
+ response = await self.askQuestion(message)
81
+ serverResponse = f"server: {response}"
82
+ print(serverResponse)
83
+ output_Msg = st.chat_message("ai")
84
+ output_Msg.markdown(serverResponse)
85
+ timestamp = datetime.datetime.now().isoformat()
86
+ serverSender = 'server'
87
+ db = sqlite3.connect('chat-hub.db')
88
+ db.execute('INSERT INTO messages (sender, message, timestamp) VALUES (?, ?, ?)',
89
+ (serverSender, serverResponse, timestamp))
90
+ db.commit()
91
+ # Append the server response to the server_responses list
92
+ await websocket.send(serverResponse)
93
+ status.update(label="runs", state="complete", expanded=True)
94
+
95
+ except websockets.exceptions.ConnectionClosedError as e:
96
+ print(f"Connection closed: {e}")
97
+
98
+ except Exception as e:
99
+ print(f"Error: {e}")
100
+
101
+ def run_forever(self):
102
+ asyncio.get_event_loop().run_until_complete(self.start_server())
103
+ asyncio.get_event_loop().run_forever()
104
+
105
+ async def stop_server(self):
106
+ if self.server:
107
+ self.server.close()
108
+ await self.server.wait_closed()
109
+ print("WebSocket server stopped.")
clientChaindesk.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import asyncio
3
+ import websockets
4
+ import threading
5
+ import sqlite3
6
+ import requests
7
+ import streamlit as st
8
+
9
+ client_ports = []
10
+
11
+ # Define the websocket client class
12
+ class WebSocketClient6:
13
+ def __init__(self):
14
+ # Initialize the uri attribute
15
+ self.name = f"Chaindesk client port: {self.clientPort}"
16
+ self.status = st.sidebar.status(label=self.name, state="complete", expanded=False)
17
+
18
+ if "client_ports" not in st.session_state:
19
+ st.session_state['client_ports'] = ""
20
+ if "clientPort" not in st.session_state:
21
+ st.session_state.clientPort = ""
22
+
23
+ async def askChaindesk(self, question):
24
+
25
+ if "agentID" not in st.session_state:
26
+ st.session_state.agentID = ""
27
+
28
+ id = st.session_state.agentID
29
+
30
+ url = f"https://api.chaindesk.ai/agents/{id}/query"
31
+
32
+ payload = {
33
+ "query": question
34
+ }
35
+
36
+ headers = {
37
+ "Authorization": "Bearer fe77e704-bc5a-4171-90f2-9d4b0d4ac942",
38
+ "Content-Type": "application/json"
39
+ }
40
+ try:
41
+ response = requests.request("POST", url, json=payload, headers=headers)
42
+ print(response.text)
43
+ response_text = response.text
44
+ responseJson = json.loads(response_text)
45
+ answer = responseJson["answer"]
46
+
47
+ print(response.text)
48
+ return answer
49
+
50
+ except Exception as e:
51
+ print(e)
52
+
53
+ # Define a function that will run the client in a separate thread
54
+ def run(self):
55
+ # Create a thread object
56
+ self.thread = threading.Thread(target=self.run_client)
57
+ # Start the thread
58
+ self.thread.start()
59
+
60
+ # Define a function that will run the client using asyncio
61
+ def run_client(self):
62
+ # Get the asyncio event loop
63
+ loop = asyncio.new_event_loop()
64
+ # Set the event loop as the current one
65
+ asyncio.set_event_loop(loop)
66
+ # Run the client until it is stopped
67
+ loop.run_until_complete(self.client())
68
+
69
+ # Stop the WebSocket client
70
+ async def stop_client():
71
+ global ws
72
+ # Close the connection with the server
73
+ await ws.close()
74
+ client_ports.pop()
75
+ print("Stopping WebSocket client...")
76
+
77
+ # Define a coroutine that will connect to the server and exchange messages
78
+ async def startClient(self, clientPort):
79
+ uri = f'ws://localhost:{clientPort}'
80
+ client_ports.append(clientPort)
81
+ st.session_state['client_ports'] = client_ports
82
+ st.session_state.clientPort = clientPort
83
+ status = self.status
84
+ # Connect to the server
85
+ async with websockets.connect(uri) as websocket:
86
+ # Loop forever
87
+ while True:
88
+ status.update(label=self.name, state="running", expanded=True)
89
+ # Listen for messages from the server
90
+ input_message = await websocket.recv()
91
+ print(f"Server: {input_message}")
92
+ input_Msg = st.chat_message("assistant")
93
+ input_Msg.markdown(input_message)
94
+ try:
95
+ response = await self.askChaindesk(input_message)
96
+ res1 = f"Client: {response}"
97
+ output_Msg = st.chat_message("ai")
98
+ output_Msg.markdown(res1)
99
+ await websocket.send(res1)
100
+ status.update(label=self.name, state="complete", expanded=True)
101
+
102
+ except websockets.ConnectionClosed:
103
+ print("client disconnected")
104
+ continue
105
+
106
+ except Exception as e:
107
+ print(f"Error: {e}")
108
+ continue
clientCharacter.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import streamlit as st
6
+ from PyCharacterAI import Client
7
+
8
+ # Define the websocket client class
9
+ class WebSocketClient2:
10
+ def __init__(self, uri):
11
+ # Initialize the uri attribute
12
+ self.uri = uri
13
+
14
+ # Define a function that will run the client in a separate thread
15
+ def run(self):
16
+ # Create a thread object
17
+ self.thread = threading.Thread(target=self.run_client)
18
+ # Start the thread
19
+ self.thread.start()
20
+
21
+ # Define a function that will run the client using asyncio
22
+ def run_client(self):
23
+ # Get the asyncio event loop
24
+ loop = asyncio.new_event_loop()
25
+ # Set the event loop as the current one
26
+ asyncio.set_event_loop(loop)
27
+ # Run the client until it is stopped
28
+ loop.run_until_complete(self.client())
29
+
30
+ # Define a coroutine that will connect to the server and exchange messages
31
+ async def startClient(self):
32
+ status = st.sidebar.status(label="runs", state="complete", expanded=False)
33
+ client = Client()
34
+ await client.authenticate_with_token(st.session_state.tokenChar)
35
+ chat = await client.create_or_continue_chat(st.session_state.character_ID)
36
+ # Connect to the server
37
+ async with websockets.connect(self.uri) as websocket:
38
+ # Loop forever
39
+ while True:
40
+ status.update(label="runs", state="running", expanded=True)
41
+ # Listen for messages from the server
42
+ input_message = await websocket.recv()
43
+ print(f"Server: {input_message}")
44
+ input_Msg = st.chat_message("assistant")
45
+ input_Msg.markdown(input_message)
46
+ try:
47
+ answer = await chat.send_message(input_message)
48
+ response = f"{answer.src_character_name}: {answer.text}"
49
+ print(response)
50
+ outputMsg1 = st.chat_message("ai")
51
+ outputMsg1.markdown(response)
52
+ await websocket.send(response)
53
+ status.update(label="runs", state="complete", expanded=True)
54
+ continue
55
+
56
+ except websockets.ConnectionClosed:
57
+ print("client disconnected")
58
+ continue
59
+
60
+ except Exception as e:
61
+ print(f"Error: {e}")
62
+ continue
clientFireworks.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import fireworks.client
6
+ import streamlit as st
7
+
8
+ # Define the websocket client class
9
+ class WebSocketClient:
10
+ def __init__(self, uri):
11
+ # Initialize the uri attribute
12
+ self.uri = uri
13
+
14
+ async def chatCompletion(self, question):
15
+ system_instruction = "You are now integrated with a local websocket server in a project of hierarchical cooperative multi-agent framework called NeuralGPT. Your main job is to coordinate simultaneous work of multiple LLMs connected to you as clients. Each LLM has a model (API) specific ID to help you recognize different clients in a continuous chat thread (template: <NAME>-agent and/or <NAME>-client). Your chat memory module is integrated with a local SQL database with chat history. Your primary objective is to maintain the logical and chronological order while answering incoming messages and to send your answers to the correct clients to maintain synchronization of the question->answer logic. However, please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic."
16
+ try:
17
+ # Connect to the database and get the last 30 messages
18
+ db = sqlite3.connect('chat-hub.db')
19
+ cursor = db.cursor()
20
+ cursor.execute("SELECT * FROM messages ORDER BY timestamp DESC LIMIT 10")
21
+ messages = cursor.fetchall()
22
+ messages.reverse()
23
+
24
+ # Extract user inputs and generated responses from the messages
25
+ past_user_inputs = []
26
+ generated_responses = []
27
+
28
+ for message in messages:
29
+ if message[1] == 'server':
30
+ past_user_inputs.append(message[2])
31
+ else:
32
+ generated_responses.append(message[2])
33
+
34
+ # Prepare data to send to the chatgpt-api.shn.hk
35
+ response = fireworks.client.ChatCompletion.create(
36
+ model="accounts/fireworks/models/llama-v2-7b-chat",
37
+ messages=[
38
+ {"role": "system", "content": system_instruction},
39
+ *[{"role": "user", "content": message} for message in past_user_inputs],
40
+ *[{"role": "assistant", "content": message} for message in generated_responses],
41
+ {"role": "user", "content": question}
42
+ ],
43
+ stream=False,
44
+ n=1,
45
+ max_tokens=2500,
46
+ temperature=0.5,
47
+ top_p=0.7,
48
+ )
49
+
50
+ answer = response.choices[0].message.content
51
+ print(answer)
52
+ return str(answer)
53
+
54
+ except Exception as error:
55
+ print("Error while fetching or processing the response:", error)
56
+ return "Error: Unable to generate a response."
57
+
58
+ # Define a function that will run the client in a separate thread
59
+ def run(self):
60
+ # Create a thread object
61
+ self.thread = threading.Thread(target=self.run_client)
62
+ # Start the thread
63
+ self.thread.start()
64
+
65
+ # Define a function that will run the client using asyncio
66
+ def run_client(self):
67
+ # Get the asyncio event loop
68
+ loop = asyncio.new_event_loop()
69
+ # Set the event loop as the current one
70
+ asyncio.set_event_loop(loop)
71
+ # Run the client until it is stopped
72
+ loop.run_until_complete(self.client())
73
+
74
+ # Define a coroutine that will connect to the server and exchange messages
75
+ async def startClient(self):
76
+ status = st.sidebar.status(label="runs", state="complete", expanded=False)
77
+ # Connect to the server
78
+ async with websockets.connect(self.uri) as websocket:
79
+ # Loop forever
80
+ while True:
81
+ status.update(label="runs", state="running", expanded=True)
82
+ # Listen for messages from the server
83
+ input_message = await websocket.recv()
84
+ print(f"Server: {input_message}")
85
+ input_Msg = st.chat_message("assistant")
86
+ input_Msg.markdown(input_message)
87
+ try:
88
+ response = await self.chatCompletion(input_message)
89
+ res1 = f"Client: {response}"
90
+ output_Msg = st.chat_message("ai")
91
+ output_Msg.markdown(res1)
92
+ await websocket.send(res1)
93
+ status.update(label="runs", state="complete", expanded=True)
94
+
95
+ except websockets.ConnectionClosed:
96
+ print("client disconnected")
97
+ continue
98
+
99
+ except Exception as e:
100
+ print(f"Error: {e}")
101
+ continue
clientFlowise.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import g4f
6
+ import requests
7
+ import streamlit as st
8
+
9
+ client_ports = []
10
+
11
+ # Define the websocket client class
12
+ class WebSocketClient5:
13
+ def __init__(self, clientPort):
14
+ # Initialize the uri attribute
15
+ self.clientPort = clientPort
16
+
17
+ if "client_ports" not in st.session_state:
18
+ st.session_state['client_ports'] = ""
19
+
20
+ async def askQuestion(self, question):
21
+
22
+ if "flow" not in st.session_state:
23
+ st.session_state.flow = ""
24
+
25
+ flow = st.session_state.flow
26
+
27
+ API_URL = f"http://localhost:3000/api/v1/prediction/{flow}"
28
+
29
+ try:
30
+ def query(payload):
31
+ response = requests.post(API_URL, json=payload)
32
+ return response.json()
33
+
34
+ response = query({
35
+ "question": question,
36
+ })
37
+
38
+ print(response)
39
+ answer = response["text"]
40
+ return answer
41
+
42
+ except Exception as e:
43
+ print(e)
44
+
45
+ # Define a function that will run the client in a separate thread
46
+ def run(self):
47
+ # Create a thread object
48
+ self.thread = threading.Thread(target=self.run_client)
49
+ # Start the thread
50
+ self.thread.start()
51
+
52
+ # Define a function that will run the client using asyncio
53
+ def run_client(self):
54
+ # Get the asyncio event loop
55
+ loop = asyncio.new_event_loop()
56
+ # Set the event loop as the current one
57
+ asyncio.set_event_loop(loop)
58
+ # Run the client until it is stopped
59
+ loop.run_until_complete(self.client())
60
+
61
+ # Stop the WebSocket client
62
+ async def stop_client():
63
+ global ws
64
+ # Close the connection with the server
65
+ await ws.close()
66
+ client_ports.pop()
67
+ print("Stopping WebSocket client...")
68
+
69
+ # Define a coroutine that will connect to the server and exchange messages
70
+ async def startClient(self, clientPort):
71
+ uri = f'ws://localhost:{clientPort}'
72
+ client_ports.append(clientPort)
73
+ st.session_state['client_ports'] = client_ports
74
+ name = f"Flowise client port: {clientPort}"
75
+ status = st.sidebar.status(label=name, state="complete", expanded=False)
76
+ # Connect to the server
77
+ async with websockets.connect(uri) as websocket:
78
+ # Loop forever
79
+ while True:
80
+ status.update(label=name, state="running", expanded=True)
81
+ # Listen for messages from the server
82
+ input_message = await websocket.recv()
83
+ print(f"Server: {input_message}")
84
+ input_Msg = st.chat_message("assistant")
85
+ input_Msg.markdown(input_message)
86
+ try:
87
+ response = await self.askQuestion(input_message)
88
+ res1 = f"Client: {response}"
89
+ output_Msg = st.chat_message("ai")
90
+ output_Msg.markdown(res1)
91
+ await websocket.send(res1)
92
+ status.update(label=name, state="complete", expanded=True)
93
+ continue
94
+
95
+ except websockets.ConnectionClosed:
96
+ print("client disconnected")
97
+ continue
98
+
99
+ except Exception as e:
100
+ print(f"Error: {e}")
101
+ continue
clientForefront.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import fireworks.client
6
+ import streamlit as st
7
+ from forefront import ForefrontClient
8
+
9
+ # Define the websocket client class
10
+ class WebSocketClient4:
11
+ def __init__(self, uri):
12
+ # Initialize the uri attribute
13
+ self.uri = uri
14
+
15
+ async def chatCompletion(self, question):
16
+
17
+ if "forefront_api" not in st.session_state:
18
+ st.session_state.forefront_api = ""
19
+
20
+ forefrontAPI = st.session_state.forefront_api
21
+
22
+ ff = ForefrontClient(api_key=forefrontAPI)
23
+
24
+ system_instruction = "You are now integrated with a local instance of a hierarchical cooperative multi-agent framework called NeuralGPT"
25
+
26
+ try:
27
+ # Connect to the database and get the last 30 messages
28
+ db = sqlite3.connect('chat-hub.db')
29
+ cursor = db.cursor()
30
+ cursor.execute("SELECT * FROM messages ORDER BY timestamp DESC LIMIT 3")
31
+ messages = cursor.fetchall()
32
+ messages.reverse()
33
+
34
+ # Extract user inputs and generated responses from the messages
35
+ past_user_inputs = []
36
+ generated_responses = []
37
+ for message in messages:
38
+ if message[1] == 'server':
39
+ past_user_inputs.append(message[2])
40
+ else:
41
+ generated_responses.append(message[2])
42
+
43
+ last_msg = past_user_inputs[-1]
44
+ last_response = generated_responses[-1]
45
+ message = f'{{"client input: {last_msg}"}}'
46
+ response = f'{{"server answer: {last_response}"}}'
47
+
48
+ # Construct the message sequence for the chat model
49
+ response = ff.chat.completions.create(
50
+ messages=[
51
+ {"role": "system", "content": system_instruction},
52
+ *[{"role": "user", "content": past_user_inputs[-1]}],
53
+ *[{"role": "assistant", "content": generated_responses[-1]}],
54
+ {"role": "user", "content": question}
55
+ ],
56
+ stream=False,
57
+ model="forefront/neural-chat-7b-v3-1-chatml", # Replace with the actual model name
58
+ temperature=0.5,
59
+ max_tokens=500,
60
+ )
61
+
62
+ response_text = response.choices[0].message # Corrected indexing
63
+
64
+ print("Extracted message text:", response_text)
65
+ return response_text
66
+
67
+ except Exception as e:
68
+ print(e)
69
+
70
+ # Define a function that will run the client in a separate thread
71
+ def run(self):
72
+ # Create a thread object
73
+ self.thread = threading.Thread(target=self.run_client)
74
+ # Start the thread
75
+ self.thread.start()
76
+
77
+ # Define a function that will run the client using asyncio
78
+ def run_client(self):
79
+ # Get the asyncio event loop
80
+ loop = asyncio.new_event_loop()
81
+ # Set the event loop as the current one
82
+ asyncio.set_event_loop(loop)
83
+ # Run the client until it is stopped
84
+ loop.run_until_complete(self.client())
85
+
86
+ # Define a coroutine that will connect to the server and exchange messages
87
+ async def startClient(self):
88
+ status = st.sidebar.status(label="runs", state="complete", expanded=False)
89
+ # Connect to the server
90
+ async with websockets.connect(self.uri) as websocket:
91
+ # Loop forever
92
+ while True:
93
+ status.update(label="runs", state="running", expanded=True)
94
+ # Listen for messages from the server
95
+ input_message = await websocket.recv()
96
+ print(f"Server: {input_message}")
97
+ input_Msg = st.chat_message("assistant")
98
+ input_Msg.markdown(input_message)
99
+ try:
100
+ response = await self.chatCompletion(input_message)
101
+ res1 = f"Client: {response}"
102
+ output_Msg = st.chat_message("ai")
103
+ output_Msg.markdown(res1)
104
+ await websocket.send(res1)
105
+ status.update(label="runs", state="complete", expanded=True)
106
+
107
+ except websockets.ConnectionClosed:
108
+ print("client disconnected")
109
+ continue
110
+
111
+ except Exception as e:
112
+ print(f"Error: {e}")
113
+ continue
clientG4F.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import g4f
6
+ import streamlit as st
7
+
8
+ # Define the websocket client class
9
+ class WebSocketClient1:
10
+ def __init__(self, uri):
11
+ # Initialize the uri attribute
12
+ self.uri = uri
13
+
14
+ async def askQuestion(self, question):
15
+ system_instruction = "You are now integrated with a local websocket server in a project of hierarchical cooperative multi-agent framework called NeuralGPT. Your main job is to coordinate simultaneous work of multiple LLMs connected to you as clients. Each LLM has a model (API) specific ID to help you recognize different clients in a continuous chat thread (template: <NAME>-agent and/or <NAME>-client). Your chat memory module is integrated with a local SQL database with chat history. Your primary objective is to maintain the logical and chronological order while answering incoming messages and to send your answers to the correct clients to maintain synchronization of the question->answer logic. However, please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic."
16
+ try:
17
+ db = sqlite3.connect('chat-hub.db')
18
+ cursor = db.cursor()
19
+ cursor.execute("SELECT * FROM messages ORDER BY timestamp DESC LIMIT 30")
20
+ messages = cursor.fetchall()
21
+ messages.reverse()
22
+
23
+ past_user_inputs = []
24
+ generated_responses = []
25
+
26
+ for message in messages:
27
+ if message[1] == 'server':
28
+ past_user_inputs.append(message[2])
29
+ else:
30
+ generated_responses.append(message[2])
31
+
32
+ response = await g4f.ChatCompletion.create_async(
33
+ model=g4f.models.gpt_4,
34
+ provider=g4f.Provider.Bing,
35
+ messages=[
36
+ {"role": "system", "content": system_instruction},
37
+ *[{"role": "user", "content": message} for message in past_user_inputs],
38
+ *[{"role": "assistant", "content": message} for message in generated_responses],
39
+ {"role": "user", "content": question}
40
+ ])
41
+
42
+ print(response)
43
+ return response
44
+
45
+ except Exception as e:
46
+ print(e)
47
+
48
+ # Define a function that will run the client in a separate thread
49
+ def run(self):
50
+ # Create a thread object
51
+ self.thread = threading.Thread(target=self.run_client)
52
+ # Start the thread
53
+ self.thread.start()
54
+
55
+ # Define a function that will run the client using asyncio
56
+ def run_client(self):
57
+ # Get the asyncio event loop
58
+ loop = asyncio.new_event_loop()
59
+ # Set the event loop as the current one
60
+ asyncio.set_event_loop(loop)
61
+ # Run the client until it is stopped
62
+ loop.run_until_complete(self.client())
63
+
64
+ # Define a coroutine that will connect to the server and exchange messages
65
+ async def startClient(self):
66
+ status = st.sidebar.status(label="runs", state="complete", expanded=False)
67
+ # Connect to the server
68
+ async with websockets.connect(self.uri) as websocket:
69
+ # Loop forever
70
+ while True:
71
+ status.update(label="runs", state="running", expanded=True)
72
+ # Listen for messages from the server
73
+ input_message = await websocket.recv()
74
+ print(f"Server: {input_message}")
75
+ input_Msg = st.chat_message("assistant")
76
+ input_Msg.markdown(input_message)
77
+ try:
78
+ response = await self.askQuestion(input_message)
79
+ res1 = f"Client: {response}"
80
+ output_Msg = st.chat_message("ai")
81
+ output_Msg.markdown(res1)
82
+ await websocket.send(res1)
83
+ status.update(label="runs", state="complete", expanded=True)
84
+
85
+ except websockets.ConnectionClosed:
86
+ print("client disconnected")
87
+ continue
88
+
89
+ except Exception as e:
90
+ print(f"Error: {e}")
91
+ continue
clientG4F2.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import websockets
3
+ import threading
4
+ import sqlite3
5
+ import g4f
6
+ import streamlit as st
7
+
8
+ # Define the websocket client class
9
+ class WebSocketClient3:
10
+ def __init__(self, uri):
11
+ # Initialize the uri attribute
12
+ self.uri = uri
13
+
14
+ async def askQuestion(self, question):
15
+ system_instruction = "You are now integrated with a local websocket server in a project of hierarchical cooperative multi-agent framework called NeuralGPT. Your main job is to coordinate simultaneous work of multiple LLMs connected to you as clients. Each LLM has a model (API) specific ID to help you recognize different clients in a continuous chat thread (template: <NAME>-agent and/or <NAME>-client). Your chat memory module is integrated with a local SQL database with chat history. Your primary objective is to maintain the logical and chronological order while answering incoming messages and to send your answers to the correct clients to maintain synchronization of the question->answer logic. However, please note that you may choose to ignore or not respond to repeating inputs from specific clients as needed to prevent unnecessary traffic."
16
+ try:
17
+ db = sqlite3.connect('chat-hub.db')
18
+ cursor = db.cursor()
19
+ cursor.execute("SELECT * FROM messages ORDER BY timestamp DESC LIMIT 30")
20
+ messages = cursor.fetchall()
21
+ messages.reverse()
22
+
23
+ past_user_inputs = []
24
+ generated_responses = []
25
+
26
+ for message in messages:
27
+ if message[1] == 'client':
28
+ past_user_inputs.append(message[2])
29
+ else:
30
+ generated_responses.append(message[2])
31
+
32
+ response = await g4f.ChatCompletion.create_async(
33
+ model="gpt-3.5-turbo",
34
+ provider=g4f.Provider.You,
35
+ messages=[
36
+ {"role": "system", "content": system_instruction},
37
+ *[{"role": "user", "content": message} for message in past_user_inputs],
38
+ *[{"role": "assistant", "content": message} for message in generated_responses],
39
+ {"role": "user", "content": question}
40
+ ])
41
+
42
+ print(response)
43
+ return response
44
+
45
+ except Exception as e:
46
+ print(e)
47
+
48
+ # Define a function that will run the client in a separate thread
49
+ def run(self):
50
+ # Create a thread object
51
+ self.thread = threading.Thread(target=self.run_client)
52
+ # Start the thread
53
+ self.thread.start()
54
+
55
+ # Define a function that will run the client using asyncio
56
+ def run_client(self):
57
+ # Get the asyncio event loop
58
+ loop = asyncio.new_event_loop()
59
+ # Set the event loop as the current one
60
+ asyncio.set_event_loop(loop)
61
+ # Run the client until it is stopped
62
+ loop.run_until_complete(self.client())
63
+
64
+ # Define a coroutine that will connect to the server and exchange messages
65
+ async def startClient(self):
66
+ # Connect to the server
67
+ status = st.sidebar.status(label="runs", state="complete", expanded=False)
68
+ async with websockets.connect(self.uri) as websocket:
69
+ # Loop forever
70
+ while True:
71
+ status.update(label="runs", state="running", expanded=True)
72
+ # Listen for messages from the server
73
+ input_message = await websocket.recv()
74
+ print(f"Server: {input_message}")
75
+ input_Msg = st.chat_message("assistant")
76
+ input_Msg.markdown(input_message)
77
+ try:
78
+ response = await self.askQuestion(input_message)
79
+ res1 = f"Client: {response}"
80
+ output_Msg = st.chat_message("ai")
81
+ output_Msg.markdown(res1)
82
+ await websocket.send(res1)
83
+ status.update(label="runs", state="complete", expanded=True)
84
+
85
+ except websockets.ConnectionClosed:
86
+ print("client disconnected")
87
+ continue
88
+
89
+ except Exception as e:
90
+ print(f"Error: {e}")
91
+ continue