Spaces:
Runtime error
Runtime error
Merge pull request #5 from arielhsieh8/milestone-3
Browse files- AI_Milestone_3.ipynb +714 -0
AI_Milestone_3.ipynb
ADDED
@@ -0,0 +1,714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "view-in-github",
|
7 |
+
"colab_type": "text"
|
8 |
+
},
|
9 |
+
"source": [
|
10 |
+
"<a href=\"https://colab.research.google.com/github/arielhsieh8/cs-uy-4613-project/blob/milestone-3/AI_Milestone_3.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"metadata": {
|
17 |
+
"colab": {
|
18 |
+
"base_uri": "https://localhost:8080/"
|
19 |
+
},
|
20 |
+
"id": "MCO9jo5gyX2c",
|
21 |
+
"outputId": "b3fc4262-aa28-4363-d56e-b85a8fb29d3c"
|
22 |
+
},
|
23 |
+
"outputs": [
|
24 |
+
{
|
25 |
+
"output_type": "stream",
|
26 |
+
"name": "stdout",
|
27 |
+
"text": [
|
28 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
29 |
+
"Requirement already satisfied: transformers in /usr/local/lib/python3.9/dist-packages (4.28.1)\n",
|
30 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from transformers) (2.27.1)\n",
|
31 |
+
"Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.9/dist-packages (from transformers) (0.13.3)\n",
|
32 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.9/dist-packages (from transformers) (23.1)\n",
|
33 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.9/dist-packages (from transformers) (6.0)\n",
|
34 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (1.22.4)\n",
|
35 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.9/dist-packages (from transformers) (4.65.0)\n",
|
36 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from transformers) (3.11.0)\n",
|
37 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.11.0 in /usr/local/lib/python3.9/dist-packages (from transformers) (0.13.4)\n",
|
38 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.9/dist-packages (from transformers) (2022.10.31)\n",
|
39 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub<1.0,>=0.11.0->transformers) (4.5.0)\n",
|
40 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (3.4)\n",
|
41 |
+
"Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2.0.12)\n",
|
42 |
+
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (1.26.15)\n",
|
43 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->transformers) (2022.12.7)\n",
|
44 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
45 |
+
"Requirement already satisfied: pandas in /usr/local/lib/python3.9/dist-packages (1.5.3)\n",
|
46 |
+
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.9/dist-packages (from pandas) (2.8.2)\n",
|
47 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas) (2022.7.1)\n",
|
48 |
+
"Requirement already satisfied: numpy>=1.20.3 in /usr/local/lib/python3.9/dist-packages (from pandas) (1.22.4)\n",
|
49 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.9/dist-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n"
|
50 |
+
]
|
51 |
+
}
|
52 |
+
],
|
53 |
+
"source": [
|
54 |
+
"!pip install transformers\n",
|
55 |
+
"!pip install pandas\n"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": null,
|
61 |
+
"metadata": {
|
62 |
+
"id": "GHSa0Qb1xTvJ"
|
63 |
+
},
|
64 |
+
"outputs": [],
|
65 |
+
"source": [
|
66 |
+
"from sklearn.model_selection import train_test_split\n",
|
67 |
+
"import torch \n",
|
68 |
+
"from torch.utils.data import Dataset \n",
|
69 |
+
"from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification\n",
|
70 |
+
"from transformers import Trainer, TrainingArguments \n",
|
71 |
+
"import pandas as pd\n",
|
72 |
+
"import numpy as np\n",
|
73 |
+
"from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"execution_count": null,
|
79 |
+
"metadata": {
|
80 |
+
"id": "Sl36PcY2rxGX"
|
81 |
+
},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"model_name = \"distilbert-base-uncased\"\n",
|
85 |
+
"\n",
|
86 |
+
"train_data = pd.read_csv('train.csv')\n",
|
87 |
+
"\n",
|
88 |
+
"train_data.drop([\"id\"], inplace=True, axis=1)\n",
|
89 |
+
"train_data.dropna()\n",
|
90 |
+
"\n",
|
91 |
+
"train_texts = train_data['comment_text'].tolist()\n",
|
92 |
+
"train_labels = train_data[['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']].values.tolist()\n",
|
93 |
+
"\n",
|
94 |
+
"train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts[:100000],train_labels[:100000],test_size=0.2,random_state=42)\n",
|
95 |
+
"\n",
|
96 |
+
"class textDataset(Dataset):\n",
|
97 |
+
"\n",
|
98 |
+
" def __init__(self, encodings, labels):\n",
|
99 |
+
" self.encodings = encodings\n",
|
100 |
+
" self.labels = torch.tensor(labels).float()\n",
|
101 |
+
"\n",
|
102 |
+
" def __getitem__(self,index):\n",
|
103 |
+
" item = {key: torch.tensor(val[index]) for key, val in self.encodings.items()}\n",
|
104 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
105 |
+
" return item\n",
|
106 |
+
"\n",
|
107 |
+
" def __len__(self): \n",
|
108 |
+
" return len(self.labels)\n",
|
109 |
+
"\n",
|
110 |
+
"\n",
|
111 |
+
"tokenizer = DistilBertTokenizerFast.from_pretrained(model_name,num_labels=6,problem_type=\"multi_label_classification\")\n",
|
112 |
+
"\n",
|
113 |
+
"train_encodings = tokenizer(train_texts,truncation=True,padding=True)\n",
|
114 |
+
"val_encodings = tokenizer(val_texts,truncation=True,padding=True)\n",
|
115 |
+
"\n",
|
116 |
+
"train_dataset = textDataset(train_encodings,train_labels)\n",
|
117 |
+
"val_dataset = textDataset(val_encodings,val_labels)\n",
|
118 |
+
"\n"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": null,
|
124 |
+
"metadata": {
|
125 |
+
"colab": {
|
126 |
+
"base_uri": "https://localhost:8080/"
|
127 |
+
},
|
128 |
+
"id": "8uyVppYpxJ7r",
|
129 |
+
"outputId": "6c7feff9-2b63-47fc-8fc8-78999b8a2d74"
|
130 |
+
},
|
131 |
+
"outputs": [
|
132 |
+
{
|
133 |
+
"output_type": "stream",
|
134 |
+
"name": "stderr",
|
135 |
+
"text": [
|
136 |
+
"Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_projector.weight', 'vocab_layer_norm.bias', 'vocab_layer_norm.weight', 'vocab_transform.bias', 'vocab_transform.weight', 'vocab_projector.bias']\n",
|
137 |
+
"- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
138 |
+
"- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
139 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.weight', 'pre_classifier.weight', 'pre_classifier.bias', 'classifier.bias']\n",
|
140 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
141 |
+
]
|
142 |
+
}
|
143 |
+
],
|
144 |
+
"source": [
|
145 |
+
"training_args = TrainingArguments(\n",
|
146 |
+
" output_dir='./results',\n",
|
147 |
+
" num_train_epochs=2,\n",
|
148 |
+
" per_device_train_batch_size=16,\n",
|
149 |
+
" per_device_eval_batch_size=16,\n",
|
150 |
+
" warmup_steps=500,\n",
|
151 |
+
" learning_rate=5e-5,\n",
|
152 |
+
" weight_decay=0.01,\n",
|
153 |
+
" logging_dir='./logs',\n",
|
154 |
+
" logging_steps=100,\n",
|
155 |
+
")\n",
|
156 |
+
"\n",
|
157 |
+
"model = DistilBertForSequenceClassification.from_pretrained(model_name, num_labels=6,problem_type=\"multi_label_classification\")\n",
|
158 |
+
"\n",
|
159 |
+
"trainer = Trainer(\n",
|
160 |
+
" model=model,\n",
|
161 |
+
" args=training_args,\n",
|
162 |
+
" train_dataset=train_dataset,\n",
|
163 |
+
" eval_dataset=val_dataset,\n",
|
164 |
+
")\n",
|
165 |
+
"\n"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"cell_type": "code",
|
170 |
+
"execution_count": null,
|
171 |
+
"metadata": {
|
172 |
+
"colab": {
|
173 |
+
"base_uri": "https://localhost:8080/",
|
174 |
+
"height": 1000
|
175 |
+
},
|
176 |
+
"id": "lGigZhWtV0ld",
|
177 |
+
"outputId": "b2081e70-ed7c-4007-e231-3c9d269f398b"
|
178 |
+
},
|
179 |
+
"outputs": [
|
180 |
+
{
|
181 |
+
"output_type": "stream",
|
182 |
+
"name": "stderr",
|
183 |
+
"text": [
|
184 |
+
"/usr/local/lib/python3.9/dist-packages/transformers/optimization.py:391: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
185 |
+
" warnings.warn(\n",
|
186 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
187 |
+
" item['labels'] = torch.tensor(self.labels[index])\n"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"output_type": "display_data",
|
192 |
+
"data": {
|
193 |
+
"text/plain": [
|
194 |
+
"<IPython.core.display.HTML object>"
|
195 |
+
],
|
196 |
+
"text/html": [
|
197 |
+
"\n",
|
198 |
+
" <div>\n",
|
199 |
+
" \n",
|
200 |
+
" <progress value='10000' max='10000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
201 |
+
" [10000/10000 2:00:23, Epoch 2/2]\n",
|
202 |
+
" </div>\n",
|
203 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
204 |
+
" <thead>\n",
|
205 |
+
" <tr style=\"text-align: left;\">\n",
|
206 |
+
" <th>Step</th>\n",
|
207 |
+
" <th>Training Loss</th>\n",
|
208 |
+
" </tr>\n",
|
209 |
+
" </thead>\n",
|
210 |
+
" <tbody>\n",
|
211 |
+
" <tr>\n",
|
212 |
+
" <td>100</td>\n",
|
213 |
+
" <td>0.522000</td>\n",
|
214 |
+
" </tr>\n",
|
215 |
+
" <tr>\n",
|
216 |
+
" <td>200</td>\n",
|
217 |
+
" <td>0.169400</td>\n",
|
218 |
+
" </tr>\n",
|
219 |
+
" <tr>\n",
|
220 |
+
" <td>300</td>\n",
|
221 |
+
" <td>0.088900</td>\n",
|
222 |
+
" </tr>\n",
|
223 |
+
" <tr>\n",
|
224 |
+
" <td>400</td>\n",
|
225 |
+
" <td>0.058000</td>\n",
|
226 |
+
" </tr>\n",
|
227 |
+
" <tr>\n",
|
228 |
+
" <td>500</td>\n",
|
229 |
+
" <td>0.068900</td>\n",
|
230 |
+
" </tr>\n",
|
231 |
+
" <tr>\n",
|
232 |
+
" <td>600</td>\n",
|
233 |
+
" <td>0.051600</td>\n",
|
234 |
+
" </tr>\n",
|
235 |
+
" <tr>\n",
|
236 |
+
" <td>700</td>\n",
|
237 |
+
" <td>0.057400</td>\n",
|
238 |
+
" </tr>\n",
|
239 |
+
" <tr>\n",
|
240 |
+
" <td>800</td>\n",
|
241 |
+
" <td>0.049300</td>\n",
|
242 |
+
" </tr>\n",
|
243 |
+
" <tr>\n",
|
244 |
+
" <td>900</td>\n",
|
245 |
+
" <td>0.048100</td>\n",
|
246 |
+
" </tr>\n",
|
247 |
+
" <tr>\n",
|
248 |
+
" <td>1000</td>\n",
|
249 |
+
" <td>0.062500</td>\n",
|
250 |
+
" </tr>\n",
|
251 |
+
" <tr>\n",
|
252 |
+
" <td>1100</td>\n",
|
253 |
+
" <td>0.051300</td>\n",
|
254 |
+
" </tr>\n",
|
255 |
+
" <tr>\n",
|
256 |
+
" <td>1200</td>\n",
|
257 |
+
" <td>0.050700</td>\n",
|
258 |
+
" </tr>\n",
|
259 |
+
" <tr>\n",
|
260 |
+
" <td>1300</td>\n",
|
261 |
+
" <td>0.049000</td>\n",
|
262 |
+
" </tr>\n",
|
263 |
+
" <tr>\n",
|
264 |
+
" <td>1400</td>\n",
|
265 |
+
" <td>0.047100</td>\n",
|
266 |
+
" </tr>\n",
|
267 |
+
" <tr>\n",
|
268 |
+
" <td>1500</td>\n",
|
269 |
+
" <td>0.041500</td>\n",
|
270 |
+
" </tr>\n",
|
271 |
+
" <tr>\n",
|
272 |
+
" <td>1600</td>\n",
|
273 |
+
" <td>0.049000</td>\n",
|
274 |
+
" </tr>\n",
|
275 |
+
" <tr>\n",
|
276 |
+
" <td>1700</td>\n",
|
277 |
+
" <td>0.052800</td>\n",
|
278 |
+
" </tr>\n",
|
279 |
+
" <tr>\n",
|
280 |
+
" <td>1800</td>\n",
|
281 |
+
" <td>0.049300</td>\n",
|
282 |
+
" </tr>\n",
|
283 |
+
" <tr>\n",
|
284 |
+
" <td>1900</td>\n",
|
285 |
+
" <td>0.043500</td>\n",
|
286 |
+
" </tr>\n",
|
287 |
+
" <tr>\n",
|
288 |
+
" <td>2000</td>\n",
|
289 |
+
" <td>0.047700</td>\n",
|
290 |
+
" </tr>\n",
|
291 |
+
" <tr>\n",
|
292 |
+
" <td>2100</td>\n",
|
293 |
+
" <td>0.046600</td>\n",
|
294 |
+
" </tr>\n",
|
295 |
+
" <tr>\n",
|
296 |
+
" <td>2200</td>\n",
|
297 |
+
" <td>0.045900</td>\n",
|
298 |
+
" </tr>\n",
|
299 |
+
" <tr>\n",
|
300 |
+
" <td>2300</td>\n",
|
301 |
+
" <td>0.045900</td>\n",
|
302 |
+
" </tr>\n",
|
303 |
+
" <tr>\n",
|
304 |
+
" <td>2400</td>\n",
|
305 |
+
" <td>0.042200</td>\n",
|
306 |
+
" </tr>\n",
|
307 |
+
" <tr>\n",
|
308 |
+
" <td>2500</td>\n",
|
309 |
+
" <td>0.043100</td>\n",
|
310 |
+
" </tr>\n",
|
311 |
+
" <tr>\n",
|
312 |
+
" <td>2600</td>\n",
|
313 |
+
" <td>0.044200</td>\n",
|
314 |
+
" </tr>\n",
|
315 |
+
" <tr>\n",
|
316 |
+
" <td>2700</td>\n",
|
317 |
+
" <td>0.043900</td>\n",
|
318 |
+
" </tr>\n",
|
319 |
+
" <tr>\n",
|
320 |
+
" <td>2800</td>\n",
|
321 |
+
" <td>0.042400</td>\n",
|
322 |
+
" </tr>\n",
|
323 |
+
" <tr>\n",
|
324 |
+
" <td>2900</td>\n",
|
325 |
+
" <td>0.051700</td>\n",
|
326 |
+
" </tr>\n",
|
327 |
+
" <tr>\n",
|
328 |
+
" <td>3000</td>\n",
|
329 |
+
" <td>0.049700</td>\n",
|
330 |
+
" </tr>\n",
|
331 |
+
" <tr>\n",
|
332 |
+
" <td>3100</td>\n",
|
333 |
+
" <td>0.045700</td>\n",
|
334 |
+
" </tr>\n",
|
335 |
+
" <tr>\n",
|
336 |
+
" <td>3200</td>\n",
|
337 |
+
" <td>0.047400</td>\n",
|
338 |
+
" </tr>\n",
|
339 |
+
" <tr>\n",
|
340 |
+
" <td>3300</td>\n",
|
341 |
+
" <td>0.042800</td>\n",
|
342 |
+
" </tr>\n",
|
343 |
+
" <tr>\n",
|
344 |
+
" <td>3400</td>\n",
|
345 |
+
" <td>0.042400</td>\n",
|
346 |
+
" </tr>\n",
|
347 |
+
" <tr>\n",
|
348 |
+
" <td>3500</td>\n",
|
349 |
+
" <td>0.045200</td>\n",
|
350 |
+
" </tr>\n",
|
351 |
+
" <tr>\n",
|
352 |
+
" <td>3600</td>\n",
|
353 |
+
" <td>0.047600</td>\n",
|
354 |
+
" </tr>\n",
|
355 |
+
" <tr>\n",
|
356 |
+
" <td>3700</td>\n",
|
357 |
+
" <td>0.044800</td>\n",
|
358 |
+
" </tr>\n",
|
359 |
+
" <tr>\n",
|
360 |
+
" <td>3800</td>\n",
|
361 |
+
" <td>0.045100</td>\n",
|
362 |
+
" </tr>\n",
|
363 |
+
" <tr>\n",
|
364 |
+
" <td>3900</td>\n",
|
365 |
+
" <td>0.041900</td>\n",
|
366 |
+
" </tr>\n",
|
367 |
+
" <tr>\n",
|
368 |
+
" <td>4000</td>\n",
|
369 |
+
" <td>0.039300</td>\n",
|
370 |
+
" </tr>\n",
|
371 |
+
" <tr>\n",
|
372 |
+
" <td>4100</td>\n",
|
373 |
+
" <td>0.039500</td>\n",
|
374 |
+
" </tr>\n",
|
375 |
+
" <tr>\n",
|
376 |
+
" <td>4200</td>\n",
|
377 |
+
" <td>0.044500</td>\n",
|
378 |
+
" </tr>\n",
|
379 |
+
" <tr>\n",
|
380 |
+
" <td>4300</td>\n",
|
381 |
+
" <td>0.042700</td>\n",
|
382 |
+
" </tr>\n",
|
383 |
+
" <tr>\n",
|
384 |
+
" <td>4400</td>\n",
|
385 |
+
" <td>0.039600</td>\n",
|
386 |
+
" </tr>\n",
|
387 |
+
" <tr>\n",
|
388 |
+
" <td>4500</td>\n",
|
389 |
+
" <td>0.040300</td>\n",
|
390 |
+
" </tr>\n",
|
391 |
+
" <tr>\n",
|
392 |
+
" <td>4600</td>\n",
|
393 |
+
" <td>0.044700</td>\n",
|
394 |
+
" </tr>\n",
|
395 |
+
" <tr>\n",
|
396 |
+
" <td>4700</td>\n",
|
397 |
+
" <td>0.040700</td>\n",
|
398 |
+
" </tr>\n",
|
399 |
+
" <tr>\n",
|
400 |
+
" <td>4800</td>\n",
|
401 |
+
" <td>0.036900</td>\n",
|
402 |
+
" </tr>\n",
|
403 |
+
" <tr>\n",
|
404 |
+
" <td>4900</td>\n",
|
405 |
+
" <td>0.046200</td>\n",
|
406 |
+
" </tr>\n",
|
407 |
+
" <tr>\n",
|
408 |
+
" <td>5000</td>\n",
|
409 |
+
" <td>0.040300</td>\n",
|
410 |
+
" </tr>\n",
|
411 |
+
" <tr>\n",
|
412 |
+
" <td>5100</td>\n",
|
413 |
+
" <td>0.031600</td>\n",
|
414 |
+
" </tr>\n",
|
415 |
+
" <tr>\n",
|
416 |
+
" <td>5200</td>\n",
|
417 |
+
" <td>0.029200</td>\n",
|
418 |
+
" </tr>\n",
|
419 |
+
" <tr>\n",
|
420 |
+
" <td>5300</td>\n",
|
421 |
+
" <td>0.031900</td>\n",
|
422 |
+
" </tr>\n",
|
423 |
+
" <tr>\n",
|
424 |
+
" <td>5400</td>\n",
|
425 |
+
" <td>0.030200</td>\n",
|
426 |
+
" </tr>\n",
|
427 |
+
" <tr>\n",
|
428 |
+
" <td>5500</td>\n",
|
429 |
+
" <td>0.035700</td>\n",
|
430 |
+
" </tr>\n",
|
431 |
+
" <tr>\n",
|
432 |
+
" <td>5600</td>\n",
|
433 |
+
" <td>0.028500</td>\n",
|
434 |
+
" </tr>\n",
|
435 |
+
" <tr>\n",
|
436 |
+
" <td>5700</td>\n",
|
437 |
+
" <td>0.034600</td>\n",
|
438 |
+
" </tr>\n",
|
439 |
+
" <tr>\n",
|
440 |
+
" <td>5800</td>\n",
|
441 |
+
" <td>0.027400</td>\n",
|
442 |
+
" </tr>\n",
|
443 |
+
" <tr>\n",
|
444 |
+
" <td>5900</td>\n",
|
445 |
+
" <td>0.034700</td>\n",
|
446 |
+
" </tr>\n",
|
447 |
+
" <tr>\n",
|
448 |
+
" <td>6000</td>\n",
|
449 |
+
" <td>0.038600</td>\n",
|
450 |
+
" </tr>\n",
|
451 |
+
" <tr>\n",
|
452 |
+
" <td>6100</td>\n",
|
453 |
+
" <td>0.028500</td>\n",
|
454 |
+
" </tr>\n",
|
455 |
+
" <tr>\n",
|
456 |
+
" <td>6200</td>\n",
|
457 |
+
" <td>0.030100</td>\n",
|
458 |
+
" </tr>\n",
|
459 |
+
" <tr>\n",
|
460 |
+
" <td>6300</td>\n",
|
461 |
+
" <td>0.028300</td>\n",
|
462 |
+
" </tr>\n",
|
463 |
+
" <tr>\n",
|
464 |
+
" <td>6400</td>\n",
|
465 |
+
" <td>0.029900</td>\n",
|
466 |
+
" </tr>\n",
|
467 |
+
" <tr>\n",
|
468 |
+
" <td>6500</td>\n",
|
469 |
+
" <td>0.035500</td>\n",
|
470 |
+
" </tr>\n",
|
471 |
+
" <tr>\n",
|
472 |
+
" <td>6600</td>\n",
|
473 |
+
" <td>0.031800</td>\n",
|
474 |
+
" </tr>\n",
|
475 |
+
" <tr>\n",
|
476 |
+
" <td>6700</td>\n",
|
477 |
+
" <td>0.029200</td>\n",
|
478 |
+
" </tr>\n",
|
479 |
+
" <tr>\n",
|
480 |
+
" <td>6800</td>\n",
|
481 |
+
" <td>0.031500</td>\n",
|
482 |
+
" </tr>\n",
|
483 |
+
" <tr>\n",
|
484 |
+
" <td>6900</td>\n",
|
485 |
+
" <td>0.029700</td>\n",
|
486 |
+
" </tr>\n",
|
487 |
+
" <tr>\n",
|
488 |
+
" <td>7000</td>\n",
|
489 |
+
" <td>0.030000</td>\n",
|
490 |
+
" </tr>\n",
|
491 |
+
" <tr>\n",
|
492 |
+
" <td>7100</td>\n",
|
493 |
+
" <td>0.038800</td>\n",
|
494 |
+
" </tr>\n",
|
495 |
+
" <tr>\n",
|
496 |
+
" <td>7200</td>\n",
|
497 |
+
" <td>0.030200</td>\n",
|
498 |
+
" </tr>\n",
|
499 |
+
" <tr>\n",
|
500 |
+
" <td>7300</td>\n",
|
501 |
+
" <td>0.024700</td>\n",
|
502 |
+
" </tr>\n",
|
503 |
+
" <tr>\n",
|
504 |
+
" <td>7400</td>\n",
|
505 |
+
" <td>0.034300</td>\n",
|
506 |
+
" </tr>\n",
|
507 |
+
" <tr>\n",
|
508 |
+
" <td>7500</td>\n",
|
509 |
+
" <td>0.030400</td>\n",
|
510 |
+
" </tr>\n",
|
511 |
+
" <tr>\n",
|
512 |
+
" <td>7600</td>\n",
|
513 |
+
" <td>0.029200</td>\n",
|
514 |
+
" </tr>\n",
|
515 |
+
" <tr>\n",
|
516 |
+
" <td>7700</td>\n",
|
517 |
+
" <td>0.035600</td>\n",
|
518 |
+
" </tr>\n",
|
519 |
+
" <tr>\n",
|
520 |
+
" <td>7800</td>\n",
|
521 |
+
" <td>0.033100</td>\n",
|
522 |
+
" </tr>\n",
|
523 |
+
" <tr>\n",
|
524 |
+
" <td>7900</td>\n",
|
525 |
+
" <td>0.028300</td>\n",
|
526 |
+
" </tr>\n",
|
527 |
+
" <tr>\n",
|
528 |
+
" <td>8000</td>\n",
|
529 |
+
" <td>0.027900</td>\n",
|
530 |
+
" </tr>\n",
|
531 |
+
" <tr>\n",
|
532 |
+
" <td>8100</td>\n",
|
533 |
+
" <td>0.031400</td>\n",
|
534 |
+
" </tr>\n",
|
535 |
+
" <tr>\n",
|
536 |
+
" <td>8200</td>\n",
|
537 |
+
" <td>0.038500</td>\n",
|
538 |
+
" </tr>\n",
|
539 |
+
" <tr>\n",
|
540 |
+
" <td>8300</td>\n",
|
541 |
+
" <td>0.034400</td>\n",
|
542 |
+
" </tr>\n",
|
543 |
+
" <tr>\n",
|
544 |
+
" <td>8400</td>\n",
|
545 |
+
" <td>0.030400</td>\n",
|
546 |
+
" </tr>\n",
|
547 |
+
" <tr>\n",
|
548 |
+
" <td>8500</td>\n",
|
549 |
+
" <td>0.033000</td>\n",
|
550 |
+
" </tr>\n",
|
551 |
+
" <tr>\n",
|
552 |
+
" <td>8600</td>\n",
|
553 |
+
" <td>0.034100</td>\n",
|
554 |
+
" </tr>\n",
|
555 |
+
" <tr>\n",
|
556 |
+
" <td>8700</td>\n",
|
557 |
+
" <td>0.027100</td>\n",
|
558 |
+
" </tr>\n",
|
559 |
+
" <tr>\n",
|
560 |
+
" <td>8800</td>\n",
|
561 |
+
" <td>0.029500</td>\n",
|
562 |
+
" </tr>\n",
|
563 |
+
" <tr>\n",
|
564 |
+
" <td>8900</td>\n",
|
565 |
+
" <td>0.025700</td>\n",
|
566 |
+
" </tr>\n",
|
567 |
+
" <tr>\n",
|
568 |
+
" <td>9000</td>\n",
|
569 |
+
" <td>0.029900</td>\n",
|
570 |
+
" </tr>\n",
|
571 |
+
" <tr>\n",
|
572 |
+
" <td>9100</td>\n",
|
573 |
+
" <td>0.024000</td>\n",
|
574 |
+
" </tr>\n",
|
575 |
+
" <tr>\n",
|
576 |
+
" <td>9200</td>\n",
|
577 |
+
" <td>0.028500</td>\n",
|
578 |
+
" </tr>\n",
|
579 |
+
" <tr>\n",
|
580 |
+
" <td>9300</td>\n",
|
581 |
+
" <td>0.031400</td>\n",
|
582 |
+
" </tr>\n",
|
583 |
+
" <tr>\n",
|
584 |
+
" <td>9400</td>\n",
|
585 |
+
" <td>0.028300</td>\n",
|
586 |
+
" </tr>\n",
|
587 |
+
" <tr>\n",
|
588 |
+
" <td>9500</td>\n",
|
589 |
+
" <td>0.030500</td>\n",
|
590 |
+
" </tr>\n",
|
591 |
+
" <tr>\n",
|
592 |
+
" <td>9600</td>\n",
|
593 |
+
" <td>0.025900</td>\n",
|
594 |
+
" </tr>\n",
|
595 |
+
" <tr>\n",
|
596 |
+
" <td>9700</td>\n",
|
597 |
+
" <td>0.033600</td>\n",
|
598 |
+
" </tr>\n",
|
599 |
+
" <tr>\n",
|
600 |
+
" <td>9800</td>\n",
|
601 |
+
" <td>0.030300</td>\n",
|
602 |
+
" </tr>\n",
|
603 |
+
" <tr>\n",
|
604 |
+
" <td>9900</td>\n",
|
605 |
+
" <td>0.028700</td>\n",
|
606 |
+
" </tr>\n",
|
607 |
+
" <tr>\n",
|
608 |
+
" <td>10000</td>\n",
|
609 |
+
" <td>0.022900</td>\n",
|
610 |
+
" </tr>\n",
|
611 |
+
" </tbody>\n",
|
612 |
+
"</table><p>"
|
613 |
+
]
|
614 |
+
},
|
615 |
+
"metadata": {}
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"output_type": "stream",
|
619 |
+
"name": "stderr",
|
620 |
+
"text": [
|
621 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
622 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
623 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
624 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
625 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
626 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
627 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
628 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
629 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
630 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
631 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
632 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
633 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
634 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
635 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
636 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
637 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
638 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
639 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
640 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
641 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
642 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
643 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
644 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
645 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
646 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
647 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
648 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
649 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
650 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
651 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
652 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
653 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
654 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
655 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
656 |
+
" item['labels'] = torch.tensor(self.labels[index])\n",
|
657 |
+
"<ipython-input-3-a55db56b85e8>:21: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
658 |
+
" item['labels'] = torch.tensor(self.labels[index])\n"
|
659 |
+
]
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"output_type": "execute_result",
|
663 |
+
"data": {
|
664 |
+
"text/plain": [
|
665 |
+
"TrainOutput(global_step=10000, training_loss=0.045082428359985355, metrics={'train_runtime': 7226.7408, 'train_samples_per_second': 22.14, 'train_steps_per_second': 1.384, 'total_flos': 2.119629570048e+16, 'train_loss': 0.045082428359985355, 'epoch': 2.0})"
|
666 |
+
]
|
667 |
+
},
|
668 |
+
"metadata": {},
|
669 |
+
"execution_count": 5
|
670 |
+
}
|
671 |
+
],
|
672 |
+
"source": [
|
673 |
+
"trainer.train()"
|
674 |
+
]
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"cell_type": "code",
|
678 |
+
"execution_count": null,
|
679 |
+
"metadata": {
|
680 |
+
"id": "lowGDIRRV2Kk"
|
681 |
+
},
|
682 |
+
"outputs": [],
|
683 |
+
"source": [
|
684 |
+
"from transformers import AutoTokenizer, AutoModelForSequenceClassification\n",
|
685 |
+
"\n",
|
686 |
+
"save_directory = \"saved\"\n",
|
687 |
+
"tokenizer.save_pretrained(save_directory)\n",
|
688 |
+
"model.save_pretrained(save_directory)\n",
|
689 |
+
"\n",
|
690 |
+
"tokenizer = AutoTokenizer.from_pretrained(save_directory)\n",
|
691 |
+
"model = AutoModelForSequenceClassification.from_pretrained(save_directory)"
|
692 |
+
]
|
693 |
+
}
|
694 |
+
],
|
695 |
+
"metadata": {
|
696 |
+
"colab": {
|
697 |
+
"provenance": [],
|
698 |
+
"mount_file_id": "1SI5wXUWiK-4VnrwWn6Pq2r2e3pzK15mn",
|
699 |
+
"authorship_tag": "ABX9TyOWwkZmPEdojeBmja70X/+z",
|
700 |
+
"include_colab_link": true
|
701 |
+
},
|
702 |
+
"kernelspec": {
|
703 |
+
"display_name": "Python 3",
|
704 |
+
"name": "python3"
|
705 |
+
},
|
706 |
+
"language_info": {
|
707 |
+
"name": "python"
|
708 |
+
},
|
709 |
+
"accelerator": "GPU",
|
710 |
+
"gpuClass": "standard"
|
711 |
+
},
|
712 |
+
"nbformat": 4,
|
713 |
+
"nbformat_minor": 0
|
714 |
+
}
|