File size: 4,494 Bytes
e547b24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40d7442
6f5a32e
e547b24
 
 
40d7442
 
e547b24
9be63af
e547b24
 
 
6f5a32e
e547b24
 
6f5a32e
e547b24
 
 
 
 
 
 
 
 
 
6f5a32e
 
e547b24
 
 
 
 
 
 
6f5a32e
e547b24
 
6f5a32e
e547b24
 
40d7442
 
 
 
 
 
 
e547b24
02f8cfa
bc84ac0
02f8cfa
 
73f7edc
e547b24
 
02f8cfa
bc84ac0
02f8cfa
 
 
 
bc84ac0
40d7442
160b513
02f8cfa
 
bc84ac0
12c1d15
 
02f8cfa
 
 
e547b24
02f8cfa
 
 
 
40d7442
 
 
 
 
 
 
 
e547b24
40d7442
e547b24
06ca9b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
import json


API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100

def query(lora_id="ByteDance/Hyper-SD", prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="DPM++ 2M Karras", seed=-1, strength=0.7):
    if prompt == "" or prompt == None:
        return None

    key = random.randint(0, 999)

    API_URL = "https://api-inference.huggingface.co/models/"+ lora_id
    
    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')
    
    payload = {
        "inputs": prompt,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
    }

    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None


examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css = """
#app-container {
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
}
"""

with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
    gr.HTML("<center><h1>FLUX.1-Dev</h1></center>")
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
                with gr.Row():
                    custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", value="", placeholder="multimodalart/vintage-ads-flux")
                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        steps = gr.Slider(label="Sampling steps", value=28, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
                        method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)

        with gr.Row():
            text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
        with gr.Row():
            image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")

        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )
        
        text_button.click(query, inputs=[custom_lora, text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=image_output)

app.launch(show_api=False, share=False)