File size: 4,090 Bytes
03d5c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
import numpy as np
import os 
import random
import requests
from PIL import Image
from io import BytesIO

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

class APIClient:
    def __init__(self, api_key=os.getenv("API_KEY"), base_url="inference.prodia.com"):
        self.headers = {
            "Content-Type": "application/json",
            "Accept": "image/jpeg",
            "Authorization": f"Bearer {api_key}"
        }
        self.base_url = f"https://{base_url}"

    def _post(self, url, json=None):
        r = requests.post(url, headers=self.headers, json=json)
        r.raise_for_status()

        return Image.open(BytesIO(r.content)).convert("RGB")

    def job(self, config):
        body = {"type": "inference.flux.dev.txt2img.v1", "config": config}
        return self._post(f"{self.base_url}/v2/job", json=body)
    

def infer(prompt, seed=42, randomize_seed=False, resolution="1024x1024", guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    width, height = resolution.split("x")
        
    image = generative_api.job({
        "prompt": prompt,
        "width": int(width),
        "height": int(height),
        "seed": seed,
        "steps": num_inference_steps,
        "guidance_scale": guidance_scale
    })
    return image, seed

generative_api = APIClient()

with open("header.md", "r") as file:
    header = file.read()
 
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
.image-container img {
    max-width: 512px;
    max-height: 512px;
    margin: 0 auto;
    border-radius: 0px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(header)
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt"
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False, format="jpeg")
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                resolution = gr.Dropdown(
                    label="Resolution",
                    value="1024x1024",
                    choices=[
                        "1024x1024",
                        "1024x576",
                        "576x1024"
                    ]
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, resolution, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )


demo.queue(default_concurrency_limit=12, max_size=14, api_open=True).launch(max_threads=256, show_api=True)