Spaces:
Runtime error
Runtime error
File size: 4,090 Bytes
03d5c24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
import numpy as np
import os
import random
import requests
from PIL import Image
from io import BytesIO
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
class APIClient:
def __init__(self, api_key=os.getenv("API_KEY"), base_url="inference.prodia.com"):
self.headers = {
"Content-Type": "application/json",
"Accept": "image/jpeg",
"Authorization": f"Bearer {api_key}"
}
self.base_url = f"https://{base_url}"
def _post(self, url, json=None):
r = requests.post(url, headers=self.headers, json=json)
r.raise_for_status()
return Image.open(BytesIO(r.content)).convert("RGB")
def job(self, config):
body = {"type": "inference.flux.dev.txt2img.v1", "config": config}
return self._post(f"{self.base_url}/v2/job", json=body)
def infer(prompt, seed=42, randomize_seed=False, resolution="1024x1024", guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
width, height = resolution.split("x")
image = generative_api.job({
"prompt": prompt,
"width": int(width),
"height": int(height),
"seed": seed,
"steps": num_inference_steps,
"guidance_scale": guidance_scale
})
return image, seed
generative_api = APIClient()
with open("header.md", "r") as file:
header = file.read()
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
.image-container img {
max-width: 512px;
max-height: 512px;
margin: 0 auto;
border-radius: 0px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(header)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt"
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False, format="jpeg")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
resolution = gr.Dropdown(
label="Resolution",
value="1024x1024",
choices=[
"1024x1024",
"1024x576",
"576x1024"
]
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, resolution, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.queue(default_concurrency_limit=12, max_size=14, api_open=True).launch(max_threads=256, show_api=True) |