Arkm20 commited on
Commit
55e7386
1 Parent(s): d611ed1

Add app.py

Browse files
Files changed (1) hide show
  1. app.py +96 -0
app.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import numpy as np
4
+ from prophet import Prophet
5
+ import yfinance as yf
6
+ from sklearn.metrics import mean_absolute_error, mean_squared_error
7
+ import matplotlib.pyplot as plt
8
+ from prophet.plot import plot_plotly, plot_components_plotly
9
+
10
+ # Function to fetch stock data from Yahoo Finance
11
+ def fetch_stock_data(ticker_symbol, start_date, end_date):
12
+ stock_data = yf.download(ticker_symbol, start=start_date, end=end_date)
13
+ df = stock_data[['Adj Close']].reset_index()
14
+ df = df.rename(columns={'Date': 'ds', 'Adj Close': 'y'})
15
+ return df
16
+
17
+ # Function to train the Prophet model
18
+ def train_prophet_model(df):
19
+ model = Prophet()
20
+ model.fit(df)
21
+ return model
22
+
23
+ # Function to make the forecast
24
+ def make_forecast(model, periods):
25
+ future = model.make_future_dataframe(periods=periods)
26
+ forecast = model.predict(future)
27
+ return forecast
28
+
29
+ # Function to calculate performance metrics
30
+ def calculate_performance_metrics(actual, predicted):
31
+ mae = mean_absolute_error(actual, predicted)
32
+ mse = mean_squared_error(actual, predicted)
33
+ rmse = np.sqrt(mse)
34
+ return {'MAE': mae, 'MSE': mse, 'RMSE': rmse}
35
+
36
+ # Function to handle the complete process and return results
37
+ def forecast_stock(ticker_symbol, start_date, end_date, forecast_horizon):
38
+ # Fetch stock data
39
+ df = fetch_stock_data(ticker_symbol, start_date, end_date)
40
+
41
+ # Train the model
42
+ model = train_prophet_model(df)
43
+
44
+ # Convert forecast horizon to days
45
+ horizon_mapping = {'1 Month': 30, '6 months': (365/2), '1 year': 365, '2 years': 730, '3 years': 1095, '5 years': 1825}
46
+ forecast_days = horizon_mapping[forecast_horizon]
47
+
48
+ # Make forecast
49
+ forecast = make_forecast(model, forecast_days)
50
+
51
+ # Plot the forecast results using matplotlib
52
+ plt.figure(figsize=(10, 6))
53
+ plt.plot(df['ds'], df['y'], label='Actual Data')
54
+ plt.plot(forecast['ds'], forecast['yhat'], label='Forecast', color='orange')
55
+ plt.fill_between(forecast['ds'], forecast['yhat_lower'], forecast['yhat_upper'], color='orange', alpha=0.2)
56
+ plt.xlabel('Date')
57
+ plt.ylabel('Price')
58
+ plt.legend()
59
+ plt.title('Stock Price Forecast')
60
+ plt.savefig('forecast_plot.png')
61
+ plt.close()
62
+
63
+ # Plot the forecast components
64
+ model.plot_components(forecast)
65
+ plt.savefig('forecast_components.png')
66
+ plt.close()
67
+
68
+ return 'forecast_plot.png', 'forecast_components.png'
69
+
70
+ # Gradio Interface
71
+ def main():
72
+ with gr.Blocks() as demo:
73
+ gr.Markdown("# Stock Forecasting")
74
+
75
+ ticker_symbol = gr.Textbox(label="Enter Ticker Symbol", value="RACE")
76
+ start_date = gr.Textbox(label="Start Date (YYYY-MM-DD) of Data", value="2015-01-01")
77
+ end_date = gr.Textbox(label="End Date (YYYY-MM-DD) of Data", value=str(pd.to_datetime('today').date()))
78
+ forecast_horizon = gr.Dropdown(
79
+ label="Forecast Horizon",
80
+ choices=['1 Month','6 months','1 year', '2 years', '3 years', '5 years'],
81
+ value='1 year'
82
+ )
83
+
84
+ forecast_button = gr.Button("Forecast Stock Prices")
85
+ plot_output1 = gr.Image(label="Forecast Plot")
86
+ plot_output2 = gr.Image(label="Forecast Components")
87
+
88
+ forecast_button.click(forecast_stock,
89
+ inputs=[ticker_symbol, start_date, end_date, forecast_horizon],
90
+ outputs=[plot_output1, plot_output2])
91
+
92
+ demo.launch()
93
+
94
+ # Run the Gradio app
95
+ if __name__ == "__main__":
96
+ main()