File size: 6,465 Bytes
d81c653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import pandas as pd
import numpy as np

def load_data(ticker):
    try:
        # Load data from CSV
        data = pd.read_csv(f'tickers/{ticker}.csv', index_col="Date", parse_dates=['Date'])
        data.sort_index(inplace=True)  # Ensure data is sorted by date
        return data
    except FileNotFoundError:
        print(f"Data for {ticker} not found.")
        return None

def sma(data, period):
    return data['Close'].rolling(window=period).mean()

def ema(data, period):
    return data['Close'].ewm(span=period, adjust=False).mean()

def score_downward_trend(data, window=4):
    """
    Score the downward trend based on price action and volume.
    """
    if len(data) < window:
        return 0  # Not enough data
    
    score = 0
    for j in range(1, window):
        if data['High'].iloc[j] < data['High'].iloc[j-1]:
            score += 1  # Increment score for each lower high
        if data['Close'].iloc[j] < data['Close'].iloc[j-1]:
            score += 1  # Increment score for each lower close
        if data['Volume'].iloc[j] > data['Volume'].iloc[j-1]:
            score += 0.5  # Increment score for increasing volume during downtrend

    return score

def score_candle(candle, data, i):
    """
    Score the candle based on its pattern, volume, and position relative to moving averages.
    """
    open_price, close_price, low_price, high_price = candle['Open'], candle['Close'], candle['Low'], candle['High']
    prev_candle = data.iloc[i-1]
    
    score = 0
    body = abs(close_price - open_price)
    bottom_wick_length = min(open_price, close_price) - low_price
    top_wick_length = high_price - max(open_price, close_price)

    # Add 16 points if candle is green and there's a significant gap
    if close_price > open_price and low_price > prev_candle['High']:
        score += 16

    # Rest of the existing scoring logic
    if bottom_wick_length > 2 * body:
        score += 10
    if abs(open_price - close_price) < (0.1 * (high_price - low_price)):
        score += 15
    if bottom_wick_length > top_wick_length:
        score += 8

    # Volume analysis
    if candle['Volume'] > data['Volume'].rolling(window=20).mean().iloc[i]:
        score += 5

    # Moving average analysis
    ema_20 = ema(data.iloc[:i+1], 20).iloc[-1]
    sma_50 = sma(data.iloc[:i+1], 50).iloc[-1]
    sma_200 = sma(data.iloc[:i+1], 200).iloc[-1]

    if close_price > ema_20 and open_price < ema_20:
        score += 5
    if close_price > sma_50:
        score += 3
    if close_price > sma_200:
        score += 2

    # Momentum indicator
    rsi = calculate_rsi(data.iloc[:i+1], period=14).iloc[-1]
    if rsi < 30:
        score += 5

    penalty = 0
    conditions_met = 0

    if candle['High'] > prev_candle['High']:
        conditions_met += 1
    if candle['Low'] > prev_candle['High']:
        conditions_met += 1
    if candle['Close'] > max(prev_candle['Close'], prev_candle['Open']):
        conditions_met += 1
    if candle['Open'] > max(prev_candle['Open'], prev_candle['Close']):
        conditions_met += 1
    
    current_avg = (candle['Open'] + candle['Close'] + candle['High'] + candle['Low']) / 4
    prev_avg = (prev_candle['Open'] + prev_candle['Close'] + prev_candle['High'] + prev_candle['Low']) / 4
    if current_avg > prev_avg:
        conditions_met += 1

    if conditions_met == 3:
        penalty = -10
    elif conditions_met == 4:
        penalty = -12
    elif conditions_met == 5:
        penalty = -17

    score += penalty

    return score

def calculate_rsi(data, period=14):
    delta = data['Close'].diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
    rs = gain / loss
    return 100 - (100 / (1 + rs))

def calculate_risk_reward(data, entry_index, stop_loss_percent=0.02, target_percent=0.06):
    entry_price = data['Close'].iloc[entry_index]
    stop_loss = entry_price * (1 - stop_loss_percent)
    target = entry_price * (1 + target_percent)
    risk = entry_price - stop_loss
    reward = target - entry_price
    return reward / risk

def find_reversal_patterns(data, window=4, candle_score_threshold=20, trend_score_threshold=5, risk_reward_threshold=2):
    patterns = []

    for i in range(window, len(data)):
        trend_score = score_downward_trend(data.iloc[i-window:i], window=window)
        if trend_score >= trend_score_threshold:
            candle_score = score_candle(data.iloc[i], data, i)
            if candle_score >= candle_score_threshold:
                risk_reward = calculate_risk_reward(data, i)
                if risk_reward >= risk_reward_threshold:
                    format_date = data.index[i].strftime('%Y-%m-%d')
                    patterns.append((format_date, trend_score, candle_score, risk_reward))
    
    return patterns

def back_reversal_finder(data, window=4, candle_score_threshold=20, trend_score_threshold=4.5, risk_reward_threshold=1.5):
    patterns = []

    for i in range(window, len(data)):
        trend_score = score_downward_trend(data.iloc[i-window:i], window=window)
        if trend_score >= trend_score_threshold:
            candle_score = score_candle(data.iloc[i], data, i)
            if candle_score >= candle_score_threshold:
                risk_reward = calculate_risk_reward(data, i)
                if risk_reward >= risk_reward_threshold:
                    format_date = data.index[i].strftime('%Y-%m-%d')
                    patterns.append(format_date)
    
    return patterns

def check_for_reversal_patterns(ticker, window=4, candle_score_threshold=20, trend_score_threshold=5, risk_reward_threshold=2):
    data = load_data(ticker)
    if data is None:
        return

    patterns = find_reversal_patterns(data, window=window, candle_score_threshold=candle_score_threshold, 
                                      trend_score_threshold=trend_score_threshold, risk_reward_threshold=risk_reward_threshold)

    if patterns:
        print(f"{ticker}: Potential reversal patterns found:")
        for date, trend_score, candle_score, risk_reward in patterns:
            print(f"Date: {date}, Trend Score: {trend_score:.2f}, Candle Score: {candle_score:.2f}, Risk-Reward: {risk_reward:.2f}")
    else:
        print(f"{ticker}: No clear reversal patterns detected.")

def main():
    ticker = input("Enter Ticker: ").upper()
    check_for_reversal_patterns(ticker)

if __name__ == '__main__':
    main()