File size: 5,183 Bytes
d81c653
 
 
 
 
 
3480103
d81c653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3480103
d81c653
 
 
 
3480103
d81c653
 
 
 
 
 
 
 
 
4ac6a43
 
3480103
 
4ac6a43
 
3480103
d81c653
4ac6a43
d81c653
4ac6a43
 
 
 
 
 
 
3480103
 
4ac6a43
 
 
 
d81c653
4ac6a43
 
 
 
 
 
 
 
 
d81c653
3480103
 
 
 
 
 
 
 
 
 
 
d81c653
 
 
 
3480103
 
 
 
 
 
 
 
d81c653
 
 
 
 
 
 
 
 
 
 
 
 
3480103
d81c653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ac6a43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import gradio as gr
import pandas as pd
import yfinance as yf
from datetime import datetime, timedelta
import requests
from bs4 import BeautifulSoup
from concurrent.futures import ThreadPoolExecutor, as_completed
from pattern_finder import score_downward_trend, score_candle, calculate_risk_reward
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)


def load_sp500_tickers():
    """Load S&P 500 tickers from Wikipedia."""
    url = "https://en.wikipedia.org/wiki/List_of_S%26P_500_companies"
    response = requests.get(url, verify=False)
    soup = BeautifulSoup(response.content, 'html.parser')
    table = soup.find('table', {'id': 'constituents'})
    tickers = []
    if table:
        for row in table.find_all('tr')[1:]:
            cells = row.find_all('td')
            if cells:
                ticker = cells[0].text.strip()
                tickers.append(ticker)
    return tickers


def load_data(ticker):
    """Load stock data using yfinance."""
    end_date = datetime.today()
    start_date = end_date - timedelta(days=365)  # Get 1 year of data
    data = yf.download(ticker, start=start_date, end=end_date)
    return data


def calculate_sma(data, window):
    """Calculate the Simple Moving Average (SMA) for a given window."""
    return data['Close'].rolling(window=window).mean()


def calculate_ema(data, window):
    """Calculate the Exponential Moving Average (EMA) for a given window."""
    return data['Close'].ewm(span=window, adjust=False).mean()


def average_downtrend(data, method, window=4):
    """Calculate the average difference between consecutive prices for the last 'window' candles."""
    if len(data) < window:
        return 0.0
    price_diffs = data[method].diff().iloc[-window:]
    avg_diff = price_diffs.mean()
    return avg_diff if avg_diff < 0 else 0.0


def score_candle(candle, prev_candle, trend_strength):
    """Score a single candle based on its characteristics and previous candle."""
    # [Keep the existing scoring logic]
    # ...
    return score


def score_today_candle(data, window=4):
    """Score today's candle based on the downtrend from the past 'window' days."""
    if len(data) < window + 1:
        return 0  # Not enough data

    today_candle = data.iloc[-1]
    prev_candle = data.iloc[-2]
    
    close_price = today_candle['Close']
    previous_data = data.iloc[-(window+1):-1]
    down_High = average_downtrend(previous_data, method="High", window=window) + average_downtrend(previous_data, method="High", window=7) / 2
    down_Close = average_downtrend(previous_data, method="Close", window=window) + average_downtrend(previous_data, method="Close", window=7) / 2
    avg_downtrend = (down_High + down_Close) / 2
  
    if avg_downtrend == 0.0:
        return -1

    sma_50 = calculate_sma(data, window=50).iloc[-1]
    sma_200 = calculate_sma(data, window=200).iloc[-1]
    sma_20 = calculate_sma(data, window=20).iloc[-1]
    ema_10 = calculate_ema(data, window=10).iloc[-1]
    
    if (close_price < ema_10) or (close_price < sma_20) or  (close_price < sma_50) or (close_price < sma_200):
        return -1

    return score_candle(today_candle, prev_candle, abs(avg_downtrend))


def scan_ticker(ticker):
    """Load data for a ticker and calculate its score."""
    data = load_data(ticker)
    if not data.empty:
        score = score_today_candle(data)
        if score > 0:
            return ticker, score
    return None


def scan_sp500(top_n=25, progress=gr.Progress()):
    tickers = load_sp500_tickers()
    tickers.append("QQQ")

    scores = []
    with ThreadPoolExecutor(max_workers=10) as executor:
        futures = {executor.submit(scan_ticker, ticker): ticker for ticker in tickers}
        for i, future in enumerate(as_completed(futures), 1):
            result = future.result()
            if result:
                scores.append(result)
            progress(i / len(tickers), desc="Processing Tickers")
    
    scores = sorted(scores, key=lambda x: x[1], reverse=True)
    return scores[:top_n]


def gradio_scan_sp500(top_n, progress=gr.Progress()):
    progress(0, desc="Downloading Data")
    tickers = load_sp500_tickers()
    tickers.append("QQQ")
    
    progress(0.3, desc="Running Scanner")
    results = scan_sp500(top_n, progress)
    
    last_data = load_data(results[0][0])
    last_date = last_data.index[-1].date()
    next_market_day = next_business_day(last_date)
    date_created = next_market_day.strftime("%Y-%m-%d")
    
    output = f"Scan Results for Market Open on: {date_created}\n\n"
    output += "Top {} stocks based on pattern finder score:\n\n".format(top_n)
    for ticker, score in results:
        output += "{}: Total Score = {:.2f}\n".format(ticker, score)
    return output

iface = gr.Interface(
    fn=gradio_scan_sp500,
    inputs=gr.Slider(minimum=1, maximum=100, step=1, label="Number of top stocks to display", value=25),
    outputs="text",
    title="S&P 500 Stock Scanner",
    description="Scan S&P 500 stocks and display top N stocks based on today's candle score.",
    allow_flagging="never",
)

if __name__ == "__main__":
    iface.launch(server_name="0.0.0.0", server_port=7860)