Arkm20's picture
Update app.py
0c52e07 verified
raw
history blame
5.17 kB
import gradio as gr
import pandas as pd
import yfinance as yf
from datetime import datetime, timedelta
import requests
from bs4 import BeautifulSoup
from pattern_finder import score_downward_trend, score_candle, calculate_risk_reward
from concurrent.futures import ThreadPoolExecutor, as_completed
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
def load_sp500_tickers():
"""Load S&P 500 tickers from Wikipedia."""
url = "https://en.wikipedia.org/wiki/List_of_S%26P_500_companies"
response = requests.get(url, verify=False)
soup = BeautifulSoup(response.content, 'html.parser')
table = soup.find('table', {'id': 'constituents'})
tickers = []
if table:
for row in table.find_all('tr')[1:]:
cells = row.find_all('td')
if cells:
ticker = cells[0].text.strip()
tickers.append(ticker)
return tickers
def load_data(ticker):
"""Load stock data using yfinance."""
end_date = datetime.today()
start_date = end_date - timedelta(days=365)
data = yf.download(ticker, start=start_date, end=end_date)
return data
def calculate_sma(data, window):
"""Calculate the Simple Moving Average (SMA) for a given window."""
return data['Close'].rolling(window=window).mean()
def calculate_ema(data, window):
"""Calculate the Exponential Moving Average (EMA) for a given window."""
return data['Close'].ewm(span=window, adjust=False).mean()
def average_downtrend(data, method, window=4):
"""Calculate the average difference between consecutive prices for the last 'window' candles."""
if len(data) < window:
return 0.0
price_diffs = data[method].diff().iloc[-window:]
avg_diff = price_diffs.mean()
return avg_diff if avg_diff < 0 else 0.0
def score_today_candle(data, window=4):
"""Score today's candle based on the downtrend from the past 'window' days."""
if len(data) < window + 1:
return 0 # Not enough data
today_candle = data.iloc[-1]
prev_candle = data.iloc[-2]
close_price = today_candle['Close']
previous_data = data.iloc[-(window+1):-1]
down_High = average_downtrend(previous_data, method="High", window=window) + average_downtrend(previous_data, method="High", window=7) / 2
down_Close = average_downtrend(previous_data, method="Close", window=window) + average_downtrend(previous_data, method="Close", window=7) / 2
avg_downtrend = (down_High + down_Close) / 2
if avg_downtrend == 0.0:
return -1
sma_50 = calculate_sma(data, window=50).iloc[-1]
sma_200 = calculate_sma(data, window=200).iloc[-1]
sma_20 = calculate_sma(data, window=20).iloc[-1]
ema_10 = calculate_ema(data, window=10).iloc[-1]
if (close_price < ema_10) or (close_price < sma_20) or (close_price < sma_50) or (close_price < sma_200):
return -1
return score_candle(today_candle, prev_candle, abs(avg_downtrend))
def scan_sp500(top_n=25, progress=gr.Progress()):
tickers = load_sp500_tickers()
scores = []
tickers.append("QQQ")
with ThreadPoolExecutor(max_workers=10) as executor:
futures = {executor.submit(load_data, ticker): ticker for ticker in tickers}
total_tickers = len(futures)
for i, future in enumerate(as_completed(futures)):
ticker = futures[future]
data = future.result()
if not data.empty:
score = score_today_candle(data)
if score > 0:
scores.append((ticker, score))
# Update progress after each ticker is processed
progress(i / total_tickers, desc=f"Processing {ticker}")
scores = sorted(scores, key=lambda x: x[1], reverse=True)
return scores[:top_n]
def next_business_day(date):
next_day = date + timedelta(days=1)
while next_day.weekday() >= 5: # 5 = Saturday, 6 = Sunday
next_day += timedelta(days=1)
return next_day
def gradio_scan_sp500(top_n, progress=gr.Progress()):
progress(0, desc="Loading S&P 500 Tickers")
tickers = load_sp500_tickers()
tickers.append("QQQ")
progress(0.2, desc="Running Stock Scanning")
results = scan_sp500(top_n, progress)
last_data = load_data(results[0][0])
last_date = last_data.index[-1].date()
next_market_day = next_business_day(last_date)
date_created = next_market_day.strftime("%Y-%m-%d")
output = f"Scan Results for Market Open on: {date_created}\n\n"
output += f"Top {top_n} stocks based on pattern finder score:\n\n"
for ticker, score in results:
output += f"{ticker}: Total Score = {score:.2f}\n"
return output
iface = gr.Interface(
fn=gradio_scan_sp500,
inputs=gr.Slider(minimum=1, maximum=100, step=1, label="Number of top stocks to display", value=25),
outputs="text",
title="S&P 500 Stock Scanner",
description="Scan S&P 500 stocks and display top N stocks based on today's candle score.",
allow_flagging="never",
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)