Spaces:
Sleeping
Sleeping
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import yfinance as yf
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.linear_model import LinearRegression
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
def get_stock_data(ticker):
|
10 |
+
today = datetime.today().strftime('%Y-%m-%d')
|
11 |
+
year_ago = (datetime.today() - timedelta(days=365)).strftime('%Y-%m-%d')
|
12 |
+
stock_data = yf.download(ticker, start=year_ago, end=today)
|
13 |
+
return stock_data
|
14 |
+
|
15 |
+
def preprocess_data(data):
|
16 |
+
data['Date'] = pd.to_datetime(data.index)
|
17 |
+
data['Date_ordinal'] = data['Date'].map(datetime.toordinal)
|
18 |
+
return data[['Date_ordinal', 'Close']]
|
19 |
+
|
20 |
+
def train_model(data):
|
21 |
+
X = data[['Date_ordinal']]
|
22 |
+
y = data['Close']
|
23 |
+
|
24 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
25 |
+
|
26 |
+
model = LinearRegression()
|
27 |
+
model.fit(X_train, y_train)
|
28 |
+
|
29 |
+
return model
|
30 |
+
|
31 |
+
def predict_price(model, date):
|
32 |
+
date_ordinal = datetime.toordinal(pd.to_datetime(date))
|
33 |
+
date_df = pd.DataFrame([[date_ordinal]], columns=['Date_ordinal'])
|
34 |
+
prediction = model.predict(date_df)
|
35 |
+
return prediction[0]
|
36 |
+
|
37 |
+
def plot_prediction(stock_data, ticker, prediction_date, predicted_price):
|
38 |
+
plt.figure(figsize=(12, 6))
|
39 |
+
plt.plot(stock_data.index, stock_data['Close'], label='Historical Data')
|
40 |
+
plt.scatter(prediction_date, predicted_price, color='red', label='Prediction')
|
41 |
+
plt.title(f'{ticker} Stock Price Prediction')
|
42 |
+
plt.xlabel('Date')
|
43 |
+
plt.ylabel('Price')
|
44 |
+
plt.legend()
|
45 |
+
plt.grid(True)
|
46 |
+
plt.savefig('prediction_plot.png')
|
47 |
+
return 'prediction_plot.png'
|
48 |
+
|
49 |
+
def predict_stock(ticker, date):
|
50 |
+
stock_data = get_stock_data(ticker)
|
51 |
+
|
52 |
+
if stock_data.empty:
|
53 |
+
return "No data found for the given ticker.", None
|
54 |
+
|
55 |
+
latest_price = stock_data['Close'].iloc[-1]
|
56 |
+
|
57 |
+
processed_data = preprocess_data(stock_data)
|
58 |
+
model = train_model(processed_data)
|
59 |
+
|
60 |
+
try:
|
61 |
+
predicted_price = predict_price(model, date)
|
62 |
+
plot_path = plot_prediction(stock_data, ticker, pd.to_datetime(date), predicted_price)
|
63 |
+
return f"The predicted closing price for {ticker} on {date} is: ${predicted_price:.2f}", plot_path
|
64 |
+
except ValueError:
|
65 |
+
return "Invalid date format. Please enter the date in YYYY-MM-DD format.", None
|
66 |
+
|
67 |
+
# Gradio app interface
|
68 |
+
|
69 |
+
inputs = [
|
70 |
+
gr.Textbox(label="Enter the stock ticker"),
|
71 |
+
gr.Textbox(label="Enter the date (YYYY-MM-DD) for the prediction")
|
72 |
+
]
|
73 |
+
outputs = [
|
74 |
+
gr.Text(label="Prediction"),
|
75 |
+
gr.Image(label="Prediction Plot")
|
76 |
+
]
|
77 |
+
|
78 |
+
gr.Interface(fn=predict_stock, inputs=inputs, outputs=outputs, title="Stock Price Prediction").launch(share=True)
|