import gradio as gr import yfinance as yf import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from datetime import datetime, timedelta import matplotlib.pyplot as plt def get_stock_data(ticker): today = datetime.today().strftime('%Y-%m-%d') year_ago = (datetime.today() - timedelta(days=365)).strftime('%Y-%m-%d') stock_data = yf.download(ticker, start=year_ago, end=today) return stock_data def preprocess_data(data): data['Date'] = pd.to_datetime(data.index) data['Date_ordinal'] = data['Date'].map(datetime.toordinal) return data[['Date_ordinal', 'Close']] def train_model(data): X = data[['Date_ordinal']] y = data['Close'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train) return model def predict_price(model, date): date_ordinal = datetime.toordinal(pd.to_datetime(date)) date_df = pd.DataFrame([[date_ordinal]], columns=['Date_ordinal']) prediction = model.predict(date_df) return prediction[0] def plot_prediction(stock_data, ticker, prediction_date, predicted_price): plt.figure(figsize=(12, 6)) plt.plot(stock_data.index, stock_data['Close'], label='Historical Data') plt.scatter(prediction_date, predicted_price, color='red', label='Prediction') plt.title(f'{ticker} Stock Price Prediction') plt.xlabel('Date') plt.ylabel('Price') plt.legend() plt.grid(True) plt.savefig('prediction_plot.png') return 'prediction_plot.png' def predict_stock(ticker, date): stock_data = get_stock_data(ticker) if stock_data.empty: return "No data found for the given ticker.", None latest_price = stock_data['Close'].iloc[-1] processed_data = preprocess_data(stock_data) model = train_model(processed_data) try: predicted_price = predict_price(model, date) plot_path = plot_prediction(stock_data, ticker, pd.to_datetime(date), predicted_price) return f"The predicted closing price for {ticker} on {date} is: ${predicted_price:.2f}", plot_path except ValueError: return "Invalid date format. Please enter the date in YYYY-MM-DD format.", None # Gradio app interface inputs = [ gr.Textbox(label="Enter the stock ticker"), gr.Textbox(label="Enter the date (YYYY-MM-DD) for the prediction") ] outputs = [ gr.Text(label="Prediction"), gr.Image(label="Prediction Plot") ] gr.Interface(fn=predict_stock, inputs=inputs, outputs=outputs, title="Stock Price Prediction").launch(share=True)