File size: 8,998 Bytes
3650c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Adapted from https://github.com/joonson/syncnet_python/blob/master/run_pipeline.py

import os, pdb, subprocess, glob, cv2
import numpy as np
from shutil import rmtree
import torch

from scenedetect.video_manager import VideoManager
from scenedetect.scene_manager import SceneManager
from scenedetect.stats_manager import StatsManager
from scenedetect.detectors import ContentDetector

from scipy.interpolate import interp1d
from scipy.io import wavfile
from scipy import signal

from eval.detectors import S3FD


class SyncNetDetector:
    def __init__(self, device, detect_results_dir="detect_results"):
        self.s3f_detector = S3FD(device=device)
        self.detect_results_dir = detect_results_dir

    def __call__(self, video_path: str, min_track=50, scale=False):
        crop_dir = os.path.join(self.detect_results_dir, "crop")
        video_dir = os.path.join(self.detect_results_dir, "video")
        frames_dir = os.path.join(self.detect_results_dir, "frames")
        temp_dir = os.path.join(self.detect_results_dir, "temp")

        # ========== DELETE EXISTING DIRECTORIES ==========
        if os.path.exists(crop_dir):
            rmtree(crop_dir)

        if os.path.exists(video_dir):
            rmtree(video_dir)

        if os.path.exists(frames_dir):
            rmtree(frames_dir)

        if os.path.exists(temp_dir):
            rmtree(temp_dir)

        # ========== MAKE NEW DIRECTORIES ==========

        os.makedirs(crop_dir)
        os.makedirs(video_dir)
        os.makedirs(frames_dir)
        os.makedirs(temp_dir)

        # ========== CONVERT VIDEO AND EXTRACT FRAMES ==========

        if scale:
            scaled_video_path = os.path.join(video_dir, "scaled.mp4")
            command = f"ffmpeg -loglevel error -y -nostdin -i {video_path} -vf scale='224:224' {scaled_video_path}"
            subprocess.run(command, shell=True)
            video_path = scaled_video_path

        command = f"ffmpeg -y -nostdin -loglevel error -i {video_path} -qscale:v 2 -async 1 -r 25 {os.path.join(video_dir, 'video.mp4')}"
        subprocess.run(command, shell=True, stdout=None)

        command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -qscale:v 2 -f image2 {os.path.join(frames_dir, '%06d.jpg')}"
        subprocess.run(command, shell=True, stdout=None)

        command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(video_dir, 'audio.wav')}"
        subprocess.run(command, shell=True, stdout=None)

        faces = self.detect_face(frames_dir)

        scene = self.scene_detect(video_dir)

        # Face tracking
        alltracks = []

        for shot in scene:
            if shot[1].frame_num - shot[0].frame_num >= min_track:
                alltracks.extend(self.track_face(faces[shot[0].frame_num : shot[1].frame_num], min_track=min_track))

        # Face crop
        for ii, track in enumerate(alltracks):
            self.crop_video(track, os.path.join(crop_dir, "%05d" % ii), frames_dir, 25, temp_dir, video_dir)

        rmtree(temp_dir)

    def scene_detect(self, video_dir):
        video_manager = VideoManager([os.path.join(video_dir, "video.mp4")])
        stats_manager = StatsManager()
        scene_manager = SceneManager(stats_manager)
        # Add ContentDetector algorithm (constructor takes detector options like threshold).
        scene_manager.add_detector(ContentDetector())
        base_timecode = video_manager.get_base_timecode()

        video_manager.set_downscale_factor()

        video_manager.start()

        scene_manager.detect_scenes(frame_source=video_manager)

        scene_list = scene_manager.get_scene_list(base_timecode)

        if scene_list == []:
            scene_list = [(video_manager.get_base_timecode(), video_manager.get_current_timecode())]

        return scene_list

    def track_face(self, scenefaces, num_failed_det=25, min_track=50, min_face_size=100):

        iouThres = 0.5  # Minimum IOU between consecutive face detections
        tracks = []

        while True:
            track = []
            for framefaces in scenefaces:
                for face in framefaces:
                    if track == []:
                        track.append(face)
                        framefaces.remove(face)
                    elif face["frame"] - track[-1]["frame"] <= num_failed_det:
                        iou = bounding_box_iou(face["bbox"], track[-1]["bbox"])
                        if iou > iouThres:
                            track.append(face)
                            framefaces.remove(face)
                            continue
                    else:
                        break

            if track == []:
                break
            elif len(track) > min_track:

                framenum = np.array([f["frame"] for f in track])
                bboxes = np.array([np.array(f["bbox"]) for f in track])

                frame_i = np.arange(framenum[0], framenum[-1] + 1)

                bboxes_i = []
                for ij in range(0, 4):
                    interpfn = interp1d(framenum, bboxes[:, ij])
                    bboxes_i.append(interpfn(frame_i))
                bboxes_i = np.stack(bboxes_i, axis=1)

                if (
                    max(np.mean(bboxes_i[:, 2] - bboxes_i[:, 0]), np.mean(bboxes_i[:, 3] - bboxes_i[:, 1]))
                    > min_face_size
                ):
                    tracks.append({"frame": frame_i, "bbox": bboxes_i})

        return tracks

    def detect_face(self, frames_dir, facedet_scale=0.25):
        flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
        flist.sort()

        dets = []

        for fidx, fname in enumerate(flist):
            image = cv2.imread(fname)

            image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            bboxes = self.s3f_detector.detect_faces(image_np, conf_th=0.9, scales=[facedet_scale])

            dets.append([])
            for bbox in bboxes:
                dets[-1].append({"frame": fidx, "bbox": (bbox[:-1]).tolist(), "conf": bbox[-1]})

        return dets

    def crop_video(self, track, cropfile, frames_dir, frame_rate, temp_dir, video_dir, crop_scale=0.4):

        flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
        flist.sort()

        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        vOut = cv2.VideoWriter(cropfile + "t.mp4", fourcc, frame_rate, (224, 224))

        dets = {"x": [], "y": [], "s": []}

        for det in track["bbox"]:

            dets["s"].append(max((det[3] - det[1]), (det[2] - det[0])) / 2)
            dets["y"].append((det[1] + det[3]) / 2)  # crop center x
            dets["x"].append((det[0] + det[2]) / 2)  # crop center y

        # Smooth detections
        dets["s"] = signal.medfilt(dets["s"], kernel_size=13)
        dets["x"] = signal.medfilt(dets["x"], kernel_size=13)
        dets["y"] = signal.medfilt(dets["y"], kernel_size=13)

        for fidx, frame in enumerate(track["frame"]):

            cs = crop_scale

            bs = dets["s"][fidx]  # Detection box size
            bsi = int(bs * (1 + 2 * cs))  # Pad videos by this amount

            image = cv2.imread(flist[frame])

            frame = np.pad(image, ((bsi, bsi), (bsi, bsi), (0, 0)), "constant", constant_values=(110, 110))
            my = dets["y"][fidx] + bsi  # BBox center Y
            mx = dets["x"][fidx] + bsi  # BBox center X

            face = frame[int(my - bs) : int(my + bs * (1 + 2 * cs)), int(mx - bs * (1 + cs)) : int(mx + bs * (1 + cs))]

            vOut.write(cv2.resize(face, (224, 224)))

        audiotmp = os.path.join(temp_dir, "audio.wav")
        audiostart = (track["frame"][0]) / frame_rate
        audioend = (track["frame"][-1] + 1) / frame_rate

        vOut.release()

        # ========== CROP AUDIO FILE ==========

        command = "ffmpeg -y -nostdin -loglevel error -i %s -ss %.3f -to %.3f %s" % (
            os.path.join(video_dir, "audio.wav"),
            audiostart,
            audioend,
            audiotmp,
        )
        output = subprocess.run(command, shell=True, stdout=None)

        sample_rate, audio = wavfile.read(audiotmp)

        # ========== COMBINE AUDIO AND VIDEO FILES ==========

        command = "ffmpeg -y -nostdin -loglevel error -i %st.mp4 -i %s -c:v copy -c:a aac %s.mp4" % (
            cropfile,
            audiotmp,
            cropfile,
        )
        output = subprocess.run(command, shell=True, stdout=None)

        os.remove(cropfile + "t.mp4")

        return {"track": track, "proc_track": dets}


def bounding_box_iou(boxA, boxB):
    xA = max(boxA[0], boxB[0])
    yA = max(boxA[1], boxB[1])
    xB = min(boxA[2], boxB[2])
    yB = min(boxA[3], boxB[3])

    interArea = max(0, xB - xA) * max(0, yB - yA)

    boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
    boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])

    iou = interArea / float(boxAArea + boxBArea - interArea)

    return iou