# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from omegaconf import OmegaConf import torch from diffusers import AutoencoderKL, DDIMScheduler from latentsync.models.unet import UNet3DConditionModel from latentsync.pipelines.lipsync_pipeline import LipsyncPipeline from diffusers.utils.import_utils import is_xformers_available from accelerate.utils import set_seed from latentsync.whisper.audio2feature import Audio2Feature def main(config, args): print(f"Input video path: {args.video_path}") print(f"Input audio path: {args.audio_path}") print(f"Loaded checkpoint path: {args.inference_ckpt_path}") scheduler = DDIMScheduler.from_pretrained("configs") if config.model.cross_attention_dim == 768: whisper_model_path = "checkpoints/whisper/small.pt" elif config.model.cross_attention_dim == 384: whisper_model_path = "checkpoints/whisper/tiny.pt" else: raise NotImplementedError("cross_attention_dim must be 768 or 384") audio_encoder = Audio2Feature(model_path=whisper_model_path, device="cuda", num_frames=config.data.num_frames) vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) vae.config.scaling_factor = 0.18215 vae.config.shift_factor = 0 unet, _ = UNet3DConditionModel.from_pretrained( OmegaConf.to_container(config.model), args.inference_ckpt_path, # load checkpoint device="cpu", ) unet = unet.to(dtype=torch.float16) # set xformers if is_xformers_available(): unet.enable_xformers_memory_efficient_attention() pipeline = LipsyncPipeline( vae=vae, audio_encoder=audio_encoder, unet=unet, scheduler=scheduler, ).to("cuda") if args.seed != -1: set_seed(args.seed) else: torch.seed() print(f"Initial seed: {torch.initial_seed()}") pipeline( video_path=args.video_path, audio_path=args.audio_path, video_out_path=args.video_out_path, video_mask_path=args.video_out_path.replace(".mp4", "_mask.mp4"), num_frames=config.data.num_frames, num_inference_steps=config.run.inference_steps, guidance_scale=args.guidance_scale, weight_dtype=torch.float16, width=config.data.resolution, height=config.data.resolution, ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--unet_config_path", type=str, default="configs/unet.yaml") parser.add_argument("--inference_ckpt_path", type=str, required=True) parser.add_argument("--video_path", type=str, required=True) parser.add_argument("--audio_path", type=str, required=True) parser.add_argument("--video_out_path", type=str, required=True) parser.add_argument("--guidance_scale", type=float, default=1.0) parser.add_argument("--seed", type=int, default=1247) args = parser.parse_args() config = OmegaConf.load(args.unet_config_path) main(config, args)