# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import os import torch.multiprocessing as mp import time def check_mem(cuda_device): devices_info = ( os.popen('"/usr/bin/nvidia-smi" --query-gpu=memory.total,memory.used --format=csv,nounits,noheader') .read() .strip() .split("\n") ) total, used = devices_info[int(cuda_device)].split(",") return total, used def loop(cuda_device): cuda_i = torch.device(f"cuda:{cuda_device}") total, used = check_mem(cuda_device) total = int(total) used = int(used) max_mem = int(total * 0.9) block_mem = max_mem - used while True: x = torch.rand(20, 512, 512, dtype=torch.float, device=cuda_i) y = torch.rand(20, 512, 512, dtype=torch.float, device=cuda_i) time.sleep(0.001) x = torch.matmul(x, y) def main(): if torch.cuda.is_available(): num_processes = torch.cuda.device_count() processes = list() for i in range(num_processes): p = mp.Process(target=loop, args=(i,)) p.start() processes.append(p) for p in processes: p.join() if __name__ == "__main__": torch.multiprocessing.set_start_method("spawn") main()