Spaces:
Running
Running
Upload app(25).py
Browse files- app(25).py +117 -0
app(25).py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
from model import U2NET
|
5 |
+
from torch.autograd import Variable
|
6 |
+
import numpy as np
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
class PortraitGenerator:
|
11 |
+
def __init__(self):
|
12 |
+
self.u2net = self.load_u2net_model()
|
13 |
+
|
14 |
+
def normPRED(self, d):
|
15 |
+
return (d - torch.min(d)) / (torch.max(d) - torch.min(d))
|
16 |
+
|
17 |
+
def inference(self, input_img):
|
18 |
+
input_img = input_img / np.max(input_img)
|
19 |
+
tmpImg = np.zeros((input_img.shape[0], input_img.shape[1], 3))
|
20 |
+
tmpImg[:, :, 0] = (input_img[:, :, 2] - 0.406) / 0.225
|
21 |
+
tmpImg[:, :, 1] = (input_img[:, :, 1] - 0.456) / 0.224
|
22 |
+
tmpImg[:, :, 2] = (input_img[:, :, 0] - 0.485) / 0.229
|
23 |
+
tmpImg = torch.from_numpy(tmpImg.transpose((2, 0, 1))[np.newaxis, :, :, :]).type(torch.FloatTensor)
|
24 |
+
tmpImg = Variable(tmpImg.cuda() if torch.cuda.is_available() else tmpImg)
|
25 |
+
d1, _, _, _, _, _, _ = self.u2net(tmpImg)
|
26 |
+
pred = self.normPRED(1.0 - d1[:, 0, :, :])
|
27 |
+
return pred.cpu().data.numpy().squeeze()
|
28 |
+
|
29 |
+
def adjust_image(self, img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction):
|
30 |
+
# Convert to grayscale if needed
|
31 |
+
if apply_bw:
|
32 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
33 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
34 |
+
|
35 |
+
# Adjust brightness and contrast
|
36 |
+
img = cv2.convertScaleAbs(img, alpha=contrast / 50.0, beta=brightness - 50)
|
37 |
+
|
38 |
+
# Adjust saturation
|
39 |
+
if saturation != 50:
|
40 |
+
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
41 |
+
hsv_img[:, :, 1] = np.clip(hsv_img[:, :, 1] * (saturation / 50.0), 0, 255)
|
42 |
+
img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR)
|
43 |
+
|
44 |
+
# Adjust white balance
|
45 |
+
if white_balance != 50:
|
46 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
|
47 |
+
l, a, b = cv2.split(img)
|
48 |
+
a = a * (white_balance / 50.0)
|
49 |
+
b = b * (white_balance / 50.0)
|
50 |
+
img = cv2.merge((l, a, b))
|
51 |
+
img = cv2.cvtColor(img, cv2.COLOR_LAB2BGR)
|
52 |
+
|
53 |
+
# Adjust hue
|
54 |
+
if hue != 50:
|
55 |
+
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
56 |
+
hsv_img[:, :, 0] = np.clip(hsv_img[:, :, 0] * (hue / 50.0), 0, 180)
|
57 |
+
img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR)
|
58 |
+
|
59 |
+
# Adjust highlights and shadows
|
60 |
+
if highlights_shadows != 50:
|
61 |
+
img = cv2.convertScaleAbs(img, alpha=1.0, beta=(highlights_shadows - 50) * 5.1)
|
62 |
+
|
63 |
+
# Adjust sharpness
|
64 |
+
if sharpness != 50:
|
65 |
+
kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) * (sharpness / 50.0)
|
66 |
+
img = cv2.filter2D(img, -1, kernel)
|
67 |
+
|
68 |
+
# Reduce noise
|
69 |
+
if noise_reduction != 50:
|
70 |
+
img = cv2.fastNlMeansDenoisingColored(img, None, noise_reduction / 50.0 * 10, noise_reduction / 50.0 * 10, 7, 21)
|
71 |
+
|
72 |
+
return img
|
73 |
+
|
74 |
+
def process_image(self, img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction, apply_adjustments, generate_final):
|
75 |
+
if not generate_final:
|
76 |
+
preview_img = self.adjust_image(img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction)
|
77 |
+
return preview_img
|
78 |
+
|
79 |
+
adjusted_img = self.adjust_image(img, apply_bw, brightness, contrast, saturation, white_balance, hue, highlights_shadows, sharpness, noise_reduction)
|
80 |
+
result = self.inference(adjusted_img)
|
81 |
+
return (result * 255).astype(np.uint8)
|
82 |
+
|
83 |
+
def load_u2net_model(self):
|
84 |
+
model_path = hf_hub_download(repo_id="Arrcttacsrks/U2net", filename="u2net_portrait.pth", use_auth_token=os.getenv("HF_TOKEN"))
|
85 |
+
net = U2NET(3, 1)
|
86 |
+
net.load_state_dict(torch.load(model_path, map_location="cuda" if torch.cuda.is_available() else "cpu"))
|
87 |
+
net.eval()
|
88 |
+
return net
|
89 |
+
|
90 |
+
def main():
|
91 |
+
portrait_generator = PortraitGenerator()
|
92 |
+
|
93 |
+
iface = gr.Interface(
|
94 |
+
fn=portrait_generator.process_image,
|
95 |
+
inputs=[
|
96 |
+
gr.Image(type="numpy", label="Upload your image"),
|
97 |
+
gr.Checkbox(label="Black & White Image"),
|
98 |
+
gr.Slider(0, 100, value=50, label="Brightness"),
|
99 |
+
gr.Slider(0, 100, value=50, label="Contrast"),
|
100 |
+
gr.Slider(0, 100, value=50, label="Saturation"),
|
101 |
+
gr.Slider(0, 100, value=50, label="White Balance"),
|
102 |
+
gr.Slider(0, 100, value=50, label="Hue"),
|
103 |
+
gr.Slider(0, 100, value=50, label="Highlights and Shadows"),
|
104 |
+
gr.Slider(0, 100, value=50, label="Sharpness"),
|
105 |
+
gr.Slider(0, 100, value=50, label="Noise Reduction"),
|
106 |
+
gr.Checkbox(label="Apply Adjustments"),
|
107 |
+
gr.Checkbox(label="Generate Final Portrait")
|
108 |
+
],
|
109 |
+
outputs=gr.Image(type="numpy", label="Preview or Portrait Result"),
|
110 |
+
title="Portrait Generation with U2NET",
|
111 |
+
description="Upload an image to generate its portrait with optional adjustments. Enable 'Generate Final Portrait' for final output."
|
112 |
+
)
|
113 |
+
|
114 |
+
iface.launch()
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
main()
|