Spaces:
Running
Running
Upload 9 files
Browse files- model/__init__.py +2 -0
- model/__pycache__/__init__.cpython-36.pyc +0 -0
- model/__pycache__/__init__.cpython-37.pyc +0 -0
- model/__pycache__/__init__.cpython-38.pyc +0 -0
- model/__pycache__/u2net.cpython-36.pyc +0 -0
- model/__pycache__/u2net.cpython-37.pyc +0 -0
- model/__pycache__/u2net.cpython-38.pyc +0 -0
- model/u2net.py +525 -0
- model/u2net_refactor.py +168 -0
model/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .u2net import U2NET
|
2 |
+
from .u2net import U2NETP
|
model/__pycache__/__init__.cpython-36.pyc
ADDED
Binary file (257 Bytes). View file
|
|
model/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (190 Bytes). View file
|
|
model/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (203 Bytes). View file
|
|
model/__pycache__/u2net.cpython-36.pyc
ADDED
Binary file (11.6 kB). View file
|
|
model/__pycache__/u2net.cpython-37.pyc
ADDED
Binary file (11.1 kB). View file
|
|
model/__pycache__/u2net.cpython-38.pyc
ADDED
Binary file (10.5 kB). View file
|
|
model/u2net.py
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
class REBNCONV(nn.Module):
|
6 |
+
def __init__(self,in_ch=3,out_ch=3,dirate=1):
|
7 |
+
super(REBNCONV,self).__init__()
|
8 |
+
|
9 |
+
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate)
|
10 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
11 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
12 |
+
|
13 |
+
def forward(self,x):
|
14 |
+
|
15 |
+
hx = x
|
16 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
17 |
+
|
18 |
+
return xout
|
19 |
+
|
20 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
21 |
+
def _upsample_like(src,tar):
|
22 |
+
|
23 |
+
src = F.upsample(src,size=tar.shape[2:],mode='bilinear')
|
24 |
+
|
25 |
+
return src
|
26 |
+
|
27 |
+
|
28 |
+
### RSU-7 ###
|
29 |
+
class RSU7(nn.Module):#UNet07DRES(nn.Module):
|
30 |
+
|
31 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
32 |
+
super(RSU7,self).__init__()
|
33 |
+
|
34 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
35 |
+
|
36 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
37 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
38 |
+
|
39 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
40 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
41 |
+
|
42 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
43 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
44 |
+
|
45 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
46 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
47 |
+
|
48 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
49 |
+
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
50 |
+
|
51 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
52 |
+
|
53 |
+
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
54 |
+
|
55 |
+
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
56 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
57 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
58 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
59 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
60 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
61 |
+
|
62 |
+
def forward(self,x):
|
63 |
+
|
64 |
+
hx = x
|
65 |
+
hxin = self.rebnconvin(hx)
|
66 |
+
|
67 |
+
hx1 = self.rebnconv1(hxin)
|
68 |
+
hx = self.pool1(hx1)
|
69 |
+
|
70 |
+
hx2 = self.rebnconv2(hx)
|
71 |
+
hx = self.pool2(hx2)
|
72 |
+
|
73 |
+
hx3 = self.rebnconv3(hx)
|
74 |
+
hx = self.pool3(hx3)
|
75 |
+
|
76 |
+
hx4 = self.rebnconv4(hx)
|
77 |
+
hx = self.pool4(hx4)
|
78 |
+
|
79 |
+
hx5 = self.rebnconv5(hx)
|
80 |
+
hx = self.pool5(hx5)
|
81 |
+
|
82 |
+
hx6 = self.rebnconv6(hx)
|
83 |
+
|
84 |
+
hx7 = self.rebnconv7(hx6)
|
85 |
+
|
86 |
+
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
87 |
+
hx6dup = _upsample_like(hx6d,hx5)
|
88 |
+
|
89 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
90 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
91 |
+
|
92 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
93 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
94 |
+
|
95 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
96 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
97 |
+
|
98 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
99 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
100 |
+
|
101 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
102 |
+
|
103 |
+
return hx1d + hxin
|
104 |
+
|
105 |
+
### RSU-6 ###
|
106 |
+
class RSU6(nn.Module):#UNet06DRES(nn.Module):
|
107 |
+
|
108 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
109 |
+
super(RSU6,self).__init__()
|
110 |
+
|
111 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
112 |
+
|
113 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
114 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
115 |
+
|
116 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
117 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
118 |
+
|
119 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
120 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
121 |
+
|
122 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
123 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
124 |
+
|
125 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
126 |
+
|
127 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
128 |
+
|
129 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
130 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
131 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
132 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
133 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
134 |
+
|
135 |
+
def forward(self,x):
|
136 |
+
|
137 |
+
hx = x
|
138 |
+
|
139 |
+
hxin = self.rebnconvin(hx)
|
140 |
+
|
141 |
+
hx1 = self.rebnconv1(hxin)
|
142 |
+
hx = self.pool1(hx1)
|
143 |
+
|
144 |
+
hx2 = self.rebnconv2(hx)
|
145 |
+
hx = self.pool2(hx2)
|
146 |
+
|
147 |
+
hx3 = self.rebnconv3(hx)
|
148 |
+
hx = self.pool3(hx3)
|
149 |
+
|
150 |
+
hx4 = self.rebnconv4(hx)
|
151 |
+
hx = self.pool4(hx4)
|
152 |
+
|
153 |
+
hx5 = self.rebnconv5(hx)
|
154 |
+
|
155 |
+
hx6 = self.rebnconv6(hx5)
|
156 |
+
|
157 |
+
|
158 |
+
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
159 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
160 |
+
|
161 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
162 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
163 |
+
|
164 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
165 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
166 |
+
|
167 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
168 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
169 |
+
|
170 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
171 |
+
|
172 |
+
return hx1d + hxin
|
173 |
+
|
174 |
+
### RSU-5 ###
|
175 |
+
class RSU5(nn.Module):#UNet05DRES(nn.Module):
|
176 |
+
|
177 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
178 |
+
super(RSU5,self).__init__()
|
179 |
+
|
180 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
181 |
+
|
182 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
183 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
184 |
+
|
185 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
186 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
187 |
+
|
188 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
189 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
190 |
+
|
191 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
192 |
+
|
193 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
194 |
+
|
195 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
196 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
197 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
198 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
199 |
+
|
200 |
+
def forward(self,x):
|
201 |
+
|
202 |
+
hx = x
|
203 |
+
|
204 |
+
hxin = self.rebnconvin(hx)
|
205 |
+
|
206 |
+
hx1 = self.rebnconv1(hxin)
|
207 |
+
hx = self.pool1(hx1)
|
208 |
+
|
209 |
+
hx2 = self.rebnconv2(hx)
|
210 |
+
hx = self.pool2(hx2)
|
211 |
+
|
212 |
+
hx3 = self.rebnconv3(hx)
|
213 |
+
hx = self.pool3(hx3)
|
214 |
+
|
215 |
+
hx4 = self.rebnconv4(hx)
|
216 |
+
|
217 |
+
hx5 = self.rebnconv5(hx4)
|
218 |
+
|
219 |
+
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
220 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
221 |
+
|
222 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
223 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
224 |
+
|
225 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
226 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
227 |
+
|
228 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
229 |
+
|
230 |
+
return hx1d + hxin
|
231 |
+
|
232 |
+
### RSU-4 ###
|
233 |
+
class RSU4(nn.Module):#UNet04DRES(nn.Module):
|
234 |
+
|
235 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
236 |
+
super(RSU4,self).__init__()
|
237 |
+
|
238 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
239 |
+
|
240 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
241 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
242 |
+
|
243 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
244 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
245 |
+
|
246 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
247 |
+
|
248 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
249 |
+
|
250 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
251 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
252 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
253 |
+
|
254 |
+
def forward(self,x):
|
255 |
+
|
256 |
+
hx = x
|
257 |
+
|
258 |
+
hxin = self.rebnconvin(hx)
|
259 |
+
|
260 |
+
hx1 = self.rebnconv1(hxin)
|
261 |
+
hx = self.pool1(hx1)
|
262 |
+
|
263 |
+
hx2 = self.rebnconv2(hx)
|
264 |
+
hx = self.pool2(hx2)
|
265 |
+
|
266 |
+
hx3 = self.rebnconv3(hx)
|
267 |
+
|
268 |
+
hx4 = self.rebnconv4(hx3)
|
269 |
+
|
270 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
271 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
272 |
+
|
273 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
274 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
275 |
+
|
276 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
277 |
+
|
278 |
+
return hx1d + hxin
|
279 |
+
|
280 |
+
### RSU-4F ###
|
281 |
+
class RSU4F(nn.Module):#UNet04FRES(nn.Module):
|
282 |
+
|
283 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
284 |
+
super(RSU4F,self).__init__()
|
285 |
+
|
286 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
287 |
+
|
288 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
289 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
290 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
291 |
+
|
292 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
293 |
+
|
294 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
295 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
296 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
297 |
+
|
298 |
+
def forward(self,x):
|
299 |
+
|
300 |
+
hx = x
|
301 |
+
|
302 |
+
hxin = self.rebnconvin(hx)
|
303 |
+
|
304 |
+
hx1 = self.rebnconv1(hxin)
|
305 |
+
hx2 = self.rebnconv2(hx1)
|
306 |
+
hx3 = self.rebnconv3(hx2)
|
307 |
+
|
308 |
+
hx4 = self.rebnconv4(hx3)
|
309 |
+
|
310 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
311 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
312 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
313 |
+
|
314 |
+
return hx1d + hxin
|
315 |
+
|
316 |
+
|
317 |
+
##### U^2-Net ####
|
318 |
+
class U2NET(nn.Module):
|
319 |
+
|
320 |
+
def __init__(self,in_ch=3,out_ch=1):
|
321 |
+
super(U2NET,self).__init__()
|
322 |
+
|
323 |
+
self.stage1 = RSU7(in_ch,32,64)
|
324 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
325 |
+
|
326 |
+
self.stage2 = RSU6(64,32,128)
|
327 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
328 |
+
|
329 |
+
self.stage3 = RSU5(128,64,256)
|
330 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
331 |
+
|
332 |
+
self.stage4 = RSU4(256,128,512)
|
333 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
334 |
+
|
335 |
+
self.stage5 = RSU4F(512,256,512)
|
336 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
337 |
+
|
338 |
+
self.stage6 = RSU4F(512,256,512)
|
339 |
+
|
340 |
+
# decoder
|
341 |
+
self.stage5d = RSU4F(1024,256,512)
|
342 |
+
self.stage4d = RSU4(1024,128,256)
|
343 |
+
self.stage3d = RSU5(512,64,128)
|
344 |
+
self.stage2d = RSU6(256,32,64)
|
345 |
+
self.stage1d = RSU7(128,16,64)
|
346 |
+
|
347 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
348 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
349 |
+
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
350 |
+
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
351 |
+
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
352 |
+
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
353 |
+
|
354 |
+
self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
355 |
+
|
356 |
+
def forward(self,x):
|
357 |
+
|
358 |
+
hx = x
|
359 |
+
|
360 |
+
#stage 1
|
361 |
+
hx1 = self.stage1(hx)
|
362 |
+
hx = self.pool12(hx1)
|
363 |
+
|
364 |
+
#stage 2
|
365 |
+
hx2 = self.stage2(hx)
|
366 |
+
hx = self.pool23(hx2)
|
367 |
+
|
368 |
+
#stage 3
|
369 |
+
hx3 = self.stage3(hx)
|
370 |
+
hx = self.pool34(hx3)
|
371 |
+
|
372 |
+
#stage 4
|
373 |
+
hx4 = self.stage4(hx)
|
374 |
+
hx = self.pool45(hx4)
|
375 |
+
|
376 |
+
#stage 5
|
377 |
+
hx5 = self.stage5(hx)
|
378 |
+
hx = self.pool56(hx5)
|
379 |
+
|
380 |
+
#stage 6
|
381 |
+
hx6 = self.stage6(hx)
|
382 |
+
hx6up = _upsample_like(hx6,hx5)
|
383 |
+
|
384 |
+
#-------------------- decoder --------------------
|
385 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
386 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
387 |
+
|
388 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
389 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
390 |
+
|
391 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
392 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
393 |
+
|
394 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
395 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
396 |
+
|
397 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
398 |
+
|
399 |
+
|
400 |
+
#side output
|
401 |
+
d1 = self.side1(hx1d)
|
402 |
+
|
403 |
+
d2 = self.side2(hx2d)
|
404 |
+
d2 = _upsample_like(d2,d1)
|
405 |
+
|
406 |
+
d3 = self.side3(hx3d)
|
407 |
+
d3 = _upsample_like(d3,d1)
|
408 |
+
|
409 |
+
d4 = self.side4(hx4d)
|
410 |
+
d4 = _upsample_like(d4,d1)
|
411 |
+
|
412 |
+
d5 = self.side5(hx5d)
|
413 |
+
d5 = _upsample_like(d5,d1)
|
414 |
+
|
415 |
+
d6 = self.side6(hx6)
|
416 |
+
d6 = _upsample_like(d6,d1)
|
417 |
+
|
418 |
+
d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
419 |
+
|
420 |
+
return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)
|
421 |
+
|
422 |
+
### U^2-Net small ###
|
423 |
+
class U2NETP(nn.Module):
|
424 |
+
|
425 |
+
def __init__(self,in_ch=3,out_ch=1):
|
426 |
+
super(U2NETP,self).__init__()
|
427 |
+
|
428 |
+
self.stage1 = RSU7(in_ch,16,64)
|
429 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
430 |
+
|
431 |
+
self.stage2 = RSU6(64,16,64)
|
432 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
433 |
+
|
434 |
+
self.stage3 = RSU5(64,16,64)
|
435 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
436 |
+
|
437 |
+
self.stage4 = RSU4(64,16,64)
|
438 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
439 |
+
|
440 |
+
self.stage5 = RSU4F(64,16,64)
|
441 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
442 |
+
|
443 |
+
self.stage6 = RSU4F(64,16,64)
|
444 |
+
|
445 |
+
# decoder
|
446 |
+
self.stage5d = RSU4F(128,16,64)
|
447 |
+
self.stage4d = RSU4(128,16,64)
|
448 |
+
self.stage3d = RSU5(128,16,64)
|
449 |
+
self.stage2d = RSU6(128,16,64)
|
450 |
+
self.stage1d = RSU7(128,16,64)
|
451 |
+
|
452 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
453 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
454 |
+
self.side3 = nn.Conv2d(64,out_ch,3,padding=1)
|
455 |
+
self.side4 = nn.Conv2d(64,out_ch,3,padding=1)
|
456 |
+
self.side5 = nn.Conv2d(64,out_ch,3,padding=1)
|
457 |
+
self.side6 = nn.Conv2d(64,out_ch,3,padding=1)
|
458 |
+
|
459 |
+
self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
460 |
+
|
461 |
+
def forward(self,x):
|
462 |
+
|
463 |
+
hx = x
|
464 |
+
|
465 |
+
#stage 1
|
466 |
+
hx1 = self.stage1(hx)
|
467 |
+
hx = self.pool12(hx1)
|
468 |
+
|
469 |
+
#stage 2
|
470 |
+
hx2 = self.stage2(hx)
|
471 |
+
hx = self.pool23(hx2)
|
472 |
+
|
473 |
+
#stage 3
|
474 |
+
hx3 = self.stage3(hx)
|
475 |
+
hx = self.pool34(hx3)
|
476 |
+
|
477 |
+
#stage 4
|
478 |
+
hx4 = self.stage4(hx)
|
479 |
+
hx = self.pool45(hx4)
|
480 |
+
|
481 |
+
#stage 5
|
482 |
+
hx5 = self.stage5(hx)
|
483 |
+
hx = self.pool56(hx5)
|
484 |
+
|
485 |
+
#stage 6
|
486 |
+
hx6 = self.stage6(hx)
|
487 |
+
hx6up = _upsample_like(hx6,hx5)
|
488 |
+
|
489 |
+
#decoder
|
490 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
491 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
492 |
+
|
493 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
494 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
495 |
+
|
496 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
497 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
498 |
+
|
499 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
500 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
501 |
+
|
502 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
503 |
+
|
504 |
+
|
505 |
+
#side output
|
506 |
+
d1 = self.side1(hx1d)
|
507 |
+
|
508 |
+
d2 = self.side2(hx2d)
|
509 |
+
d2 = _upsample_like(d2,d1)
|
510 |
+
|
511 |
+
d3 = self.side3(hx3d)
|
512 |
+
d3 = _upsample_like(d3,d1)
|
513 |
+
|
514 |
+
d4 = self.side4(hx4d)
|
515 |
+
d4 = _upsample_like(d4,d1)
|
516 |
+
|
517 |
+
d5 = self.side5(hx5d)
|
518 |
+
d5 = _upsample_like(d5,d1)
|
519 |
+
|
520 |
+
d6 = self.side6(hx6)
|
521 |
+
d6 = _upsample_like(d6,d1)
|
522 |
+
|
523 |
+
d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
524 |
+
|
525 |
+
return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)
|
model/u2net_refactor.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
import math
|
5 |
+
|
6 |
+
__all__ = ['U2NET_full', 'U2NET_lite']
|
7 |
+
|
8 |
+
|
9 |
+
def _upsample_like(x, size):
|
10 |
+
return nn.Upsample(size=size, mode='bilinear', align_corners=False)(x)
|
11 |
+
|
12 |
+
|
13 |
+
def _size_map(x, height):
|
14 |
+
# {height: size} for Upsample
|
15 |
+
size = list(x.shape[-2:])
|
16 |
+
sizes = {}
|
17 |
+
for h in range(1, height):
|
18 |
+
sizes[h] = size
|
19 |
+
size = [math.ceil(w / 2) for w in size]
|
20 |
+
return sizes
|
21 |
+
|
22 |
+
|
23 |
+
class REBNCONV(nn.Module):
|
24 |
+
def __init__(self, in_ch=3, out_ch=3, dilate=1):
|
25 |
+
super(REBNCONV, self).__init__()
|
26 |
+
|
27 |
+
self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dilate, dilation=1 * dilate)
|
28 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
29 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
return self.relu_s1(self.bn_s1(self.conv_s1(x)))
|
33 |
+
|
34 |
+
|
35 |
+
class RSU(nn.Module):
|
36 |
+
def __init__(self, name, height, in_ch, mid_ch, out_ch, dilated=False):
|
37 |
+
super(RSU, self).__init__()
|
38 |
+
self.name = name
|
39 |
+
self.height = height
|
40 |
+
self.dilated = dilated
|
41 |
+
self._make_layers(height, in_ch, mid_ch, out_ch, dilated)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
sizes = _size_map(x, self.height)
|
45 |
+
x = self.rebnconvin(x)
|
46 |
+
|
47 |
+
# U-Net like symmetric encoder-decoder structure
|
48 |
+
def unet(x, height=1):
|
49 |
+
if height < self.height:
|
50 |
+
x1 = getattr(self, f'rebnconv{height}')(x)
|
51 |
+
if not self.dilated and height < self.height - 1:
|
52 |
+
x2 = unet(getattr(self, 'downsample')(x1), height + 1)
|
53 |
+
else:
|
54 |
+
x2 = unet(x1, height + 1)
|
55 |
+
|
56 |
+
x = getattr(self, f'rebnconv{height}d')(torch.cat((x2, x1), 1))
|
57 |
+
return _upsample_like(x, sizes[height - 1]) if not self.dilated and height > 1 else x
|
58 |
+
else:
|
59 |
+
return getattr(self, f'rebnconv{height}')(x)
|
60 |
+
|
61 |
+
return x + unet(x)
|
62 |
+
|
63 |
+
def _make_layers(self, height, in_ch, mid_ch, out_ch, dilated=False):
|
64 |
+
self.add_module('rebnconvin', REBNCONV(in_ch, out_ch))
|
65 |
+
self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True))
|
66 |
+
|
67 |
+
self.add_module(f'rebnconv1', REBNCONV(out_ch, mid_ch))
|
68 |
+
self.add_module(f'rebnconv1d', REBNCONV(mid_ch * 2, out_ch))
|
69 |
+
|
70 |
+
for i in range(2, height):
|
71 |
+
dilate = 1 if not dilated else 2 ** (i - 1)
|
72 |
+
self.add_module(f'rebnconv{i}', REBNCONV(mid_ch, mid_ch, dilate=dilate))
|
73 |
+
self.add_module(f'rebnconv{i}d', REBNCONV(mid_ch * 2, mid_ch, dilate=dilate))
|
74 |
+
|
75 |
+
dilate = 2 if not dilated else 2 ** (height - 1)
|
76 |
+
self.add_module(f'rebnconv{height}', REBNCONV(mid_ch, mid_ch, dilate=dilate))
|
77 |
+
|
78 |
+
|
79 |
+
class U2NET(nn.Module):
|
80 |
+
def __init__(self, cfgs, out_ch):
|
81 |
+
super(U2NET, self).__init__()
|
82 |
+
self.out_ch = out_ch
|
83 |
+
self._make_layers(cfgs)
|
84 |
+
|
85 |
+
def forward(self, x):
|
86 |
+
sizes = _size_map(x, self.height)
|
87 |
+
maps = [] # storage for maps
|
88 |
+
|
89 |
+
# side saliency map
|
90 |
+
def unet(x, height=1):
|
91 |
+
if height < 6:
|
92 |
+
x1 = getattr(self, f'stage{height}')(x)
|
93 |
+
x2 = unet(getattr(self, 'downsample')(x1), height + 1)
|
94 |
+
x = getattr(self, f'stage{height}d')(torch.cat((x2, x1), 1))
|
95 |
+
side(x, height)
|
96 |
+
return _upsample_like(x, sizes[height - 1]) if height > 1 else x
|
97 |
+
else:
|
98 |
+
x = getattr(self, f'stage{height}')(x)
|
99 |
+
side(x, height)
|
100 |
+
return _upsample_like(x, sizes[height - 1])
|
101 |
+
|
102 |
+
def side(x, h):
|
103 |
+
# side output saliency map (before sigmoid)
|
104 |
+
x = getattr(self, f'side{h}')(x)
|
105 |
+
x = _upsample_like(x, sizes[1])
|
106 |
+
maps.append(x)
|
107 |
+
|
108 |
+
def fuse():
|
109 |
+
# fuse saliency probability maps
|
110 |
+
maps.reverse()
|
111 |
+
x = torch.cat(maps, 1)
|
112 |
+
x = getattr(self, 'outconv')(x)
|
113 |
+
maps.insert(0, x)
|
114 |
+
return [torch.sigmoid(x) for x in maps]
|
115 |
+
|
116 |
+
unet(x)
|
117 |
+
maps = fuse()
|
118 |
+
return maps
|
119 |
+
|
120 |
+
def _make_layers(self, cfgs):
|
121 |
+
self.height = int((len(cfgs) + 1) / 2)
|
122 |
+
self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True))
|
123 |
+
for k, v in cfgs.items():
|
124 |
+
# build rsu block
|
125 |
+
self.add_module(k, RSU(v[0], *v[1]))
|
126 |
+
if v[2] > 0:
|
127 |
+
# build side layer
|
128 |
+
self.add_module(f'side{v[0][-1]}', nn.Conv2d(v[2], self.out_ch, 3, padding=1))
|
129 |
+
# build fuse layer
|
130 |
+
self.add_module('outconv', nn.Conv2d(int(self.height * self.out_ch), self.out_ch, 1))
|
131 |
+
|
132 |
+
|
133 |
+
def U2NET_full():
|
134 |
+
full = {
|
135 |
+
# cfgs for building RSUs and sides
|
136 |
+
# {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]}
|
137 |
+
'stage1': ['En_1', (7, 3, 32, 64), -1],
|
138 |
+
'stage2': ['En_2', (6, 64, 32, 128), -1],
|
139 |
+
'stage3': ['En_3', (5, 128, 64, 256), -1],
|
140 |
+
'stage4': ['En_4', (4, 256, 128, 512), -1],
|
141 |
+
'stage5': ['En_5', (4, 512, 256, 512, True), -1],
|
142 |
+
'stage6': ['En_6', (4, 512, 256, 512, True), 512],
|
143 |
+
'stage5d': ['De_5', (4, 1024, 256, 512, True), 512],
|
144 |
+
'stage4d': ['De_4', (4, 1024, 128, 256), 256],
|
145 |
+
'stage3d': ['De_3', (5, 512, 64, 128), 128],
|
146 |
+
'stage2d': ['De_2', (6, 256, 32, 64), 64],
|
147 |
+
'stage1d': ['De_1', (7, 128, 16, 64), 64],
|
148 |
+
}
|
149 |
+
return U2NET(cfgs=full, out_ch=1)
|
150 |
+
|
151 |
+
|
152 |
+
def U2NET_lite():
|
153 |
+
lite = {
|
154 |
+
# cfgs for building RSUs and sides
|
155 |
+
# {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]}
|
156 |
+
'stage1': ['En_1', (7, 3, 16, 64), -1],
|
157 |
+
'stage2': ['En_2', (6, 64, 16, 64), -1],
|
158 |
+
'stage3': ['En_3', (5, 64, 16, 64), -1],
|
159 |
+
'stage4': ['En_4', (4, 64, 16, 64), -1],
|
160 |
+
'stage5': ['En_5', (4, 64, 16, 64, True), -1],
|
161 |
+
'stage6': ['En_6', (4, 64, 16, 64, True), 64],
|
162 |
+
'stage5d': ['De_5', (4, 128, 16, 64, True), 64],
|
163 |
+
'stage4d': ['De_4', (4, 128, 16, 64), 64],
|
164 |
+
'stage3d': ['De_3', (5, 128, 16, 64), 64],
|
165 |
+
'stage2d': ['De_2', (6, 128, 16, 64), 64],
|
166 |
+
'stage1d': ['De_1', (7, 128, 16, 64), 64],
|
167 |
+
}
|
168 |
+
return U2NET(cfgs=lite, out_ch=1)
|