Aita / app.py
Artificial-superintelligence's picture
Update app.py
aaf4dac verified
raw
history blame
10.2 kB
import streamlit as st
from moviepy.editor import VideoFileClip, AudioFileClip, TextClip, CompositeVideoClip
import whisper
from translate import Translator
from gtts import gTTS
import tempfile
import os
import numpy as np
from datetime import timedelta
import json
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
import azure.cognitiveservices.speech as speechsdk
import ffmpeg
# Tamil-specific voice configurations
TAMIL_VOICES = {
'Female 1': {'name': 'ta-IN-PallaviNeural', 'style': 'normal'},
'Female 2': {'name': 'ta-IN-PallaviNeural', 'style': 'formal'},
'Male 1': {'name': 'ta-IN-ValluvarNeural', 'style': 'normal'},
'Male 2': {'name': 'ta-IN-ValluvarNeural', 'style': 'formal'}
}
class TamilTextProcessor:
@staticmethod
def normalize_tamil_text(text):
"""Normalize Tamil text for better pronunciation"""
# Convert Tamil numerals to English numerals
tamil_numerals = {'௦': '0', '௧': '1', '௨': '2', '௩': '3', '௪': '4',
'௫': '5', '௬': '6', '௭': '7', '௮': '8', '௯': '9'}
for tamil_num, eng_num in tamil_numerals.items():
text = text.replace(tamil_num, eng_num)
return text
@staticmethod
def process_for_tts(text):
"""Process Tamil text for TTS"""
# Remove any unsupported characters
text = ''.join(char for char in text if ord(char) < 65535)
# Normalize whitespace
text = ' '.join(text.split())
return text
class TamilDubber:
def __init__(self):
try:
self.whisper_model = whisper.load_model("base")
except Exception as e:
st.error(f"Error loading Whisper model: {e}")
raise
self.temp_files = []
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.cleanup()
def cleanup(self):
for temp_file in self.temp_files:
if os.path.exists(temp_file):
try:
os.remove(temp_file)
except Exception:
pass
def create_temp_file(self, suffix):
temp_file = tempfile.mktemp(suffix=suffix)
self.temp_files.append(temp_file)
return temp_file
def extract_audio(self, video_path):
"""Extract audio and transcribe using Whisper"""
try:
video = VideoFileClip(video_path)
audio_path = self.create_temp_file(".wav")
video.audio.write_audiofile(audio_path)
# Transcribe using Whisper
result = self.whisper_model.transcribe(audio_path)
return result["segments"], video.duration
except Exception as e:
st.error(f"Error in audio extraction: {e}")
raise
def translate_segments(self, segments):
"""Translate segments to Tamil"""
translator = Translator(to_lang='ta')
translated_segments = []
for segment in segments:
try:
translated_text = translator.translate(segment["text"])
translated_text = TamilTextProcessor.normalize_tamil_text(translated_text)
translated_text = TamilTextProcessor.process_for_tts(translated_text)
translated_segments.append({
"text": translated_text,
"start": segment["start"],
"end": segment["end"],
"duration": segment["end"] - segment["start"]
})
except Exception as e:
st.warning(f"Translation warning for segment: {str(e)}")
# Keep original text if translation fails
translated_segments.append({
"text": segment["text"],
"start": segment["start"],
"end": segment["end"],
"duration": segment["end"] - segment["start"]
})
return translated_segments
def generate_audio(self, text, voice_style="normal"):
"""Generate Tamil audio using gTTS"""
try:
temp_path = self.create_temp_file(".mp3")
tts = gTTS(text=text, lang='ta', slow=False)
tts.save(temp_path)
return temp_path
except Exception as e:
st.error(f"Error in audio generation: {e}")
raise
def create_subtitles(self, segments, output_path):
"""Generate SRT subtitles"""
try:
with open(output_path, 'w', encoding='utf-8') as f:
for idx, segment in enumerate(segments, 1):
start_time = str(timedelta(seconds=int(segment["start"])))
end_time = str(timedelta(seconds=int(segment["end"])))
f.write(f"{idx}\n")
f.write(f"{start_time} --> {end_time}\n")
f.write(f"{segment['text']}\n\n")
except Exception as e:
st.error(f"Error creating subtitles: {e}")
raise
def main():
st.title("Tamil Movie Dubbing System")
st.sidebar.header("டப்பிங் அமைப்புகள்") # Dubbing Settings in Tamil
# File uploader
video_file = st.file_uploader("Upload Video File", type=['mp4', 'mov', 'avi'])
if not video_file:
return
# Settings
voice_type = st.selectbox("Select Voice", list(TAMIL_VOICES.keys()))
with st.expander("Advanced Settings"):
generate_subtitles = st.checkbox("Generate Tamil Subtitles", value=True)
subtitle_size = st.slider("Subtitle Size", 16, 32, 24)
subtitle_color = st.color_picker("Subtitle Color", "#FFFFFF")
if st.button("Start Tamil Dubbing"):
try:
with st.spinner("Processing video..."):
with TamilDubber() as dubber:
# Save uploaded video
temp_video_path = dubber.create_temp_file(".mp4")
with open(temp_video_path, "wb") as f:
f.write(video_file.read())
# Progress tracking
progress_bar = st.progress(0)
status_text = st.empty()
# Extract audio and transcribe
status_text.text("Extracting audio and transcribing...")
segments, video_duration = dubber.extract_audio(temp_video_path)
progress_bar.progress(0.25)
# Translate segments
status_text.text("Translating to Tamil...")
translated_segments = dubber.translate_segments(segments)
progress_bar.progress(0.50)
# Generate Tamil audio
status_text.text("Generating Tamil audio...")
output_segments = []
video = VideoFileClip(temp_video_path)
final_audio_path = dubber.create_temp_file(".mp3")
for idx, segment in enumerate(translated_segments):
audio_path = dubber.generate_audio(segment["text"])
output_segments.append({
"audio": audio_path,
"start": segment["start"],
"end": segment["end"]
})
progress_bar.progress(0.50 + (0.25 * (idx + 1) / len(translated_segments)))
# Generate subtitles if requested
if generate_subtitles:
subtitle_path = dubber.create_temp_file(".srt")
dubber.create_subtitles(translated_segments, subtitle_path)
# Create final video
status_text.text("Creating final video...")
output_path = dubber.create_temp_file(".mp4")
# Add subtitles if enabled
if generate_subtitles:
def create_subtitle_clip(txt):
return TextClip(
txt=txt,
fontsize=subtitle_size,
color=subtitle_color,
stroke_color='black',
stroke_width=1
)
subtitle_clips = []
for segment in translated_segments:
clip = create_subtitle_clip(segment["text"])
clip = clip.set_position(('center', 'bottom'))
clip = clip.set_start(segment["start"])
clip = clip.set_duration(segment["duration"])
subtitle_clips.append(clip)
final_video = CompositeVideoClip([video] + subtitle_clips)
else:
final_video = video
# Write final video
final_video.write_videofile(
output_path,
codec='libx264',
audio_codec='aac',
fps=video.fps
)
progress_bar.progress(1.0)
# Display result
st.success("டப்பிங் வெற்றிகரமாக முடிந்தது!") # Dubbing completed successfully in Tamil
st.video(output_path)
# Download button
with open(output_path, "rb") as f:
st.download_button(
"Download Dubbed Video",
f,
file_name="tamil_dubbed_video.mp4",
mime="video/mp4"
)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if __name__ == "__main__":
main()