Aita / app.py
Artificial-superintelligence's picture
Update app.py
4b6f416 verified
raw
history blame
14 kB
import streamlit as st
from moviepy.editor import VideoFileClip, AudioFileClip, TextClip, CompositeVideoClip
import whisper
from translate import Translator
from gtts import gTTS
import tempfile
import os
import numpy as np
from pydub import AudioSegment
import speech_recognition as sr
from datetime import timedelta
import json
import indic_transliteration
from indic_transliteration import sanscript
from indic_transliteration.sanscript import SchemeMap, SCHEMES, transliterate
import azure.cognitiveservices.speech as speechsdk
# Tamil-specific voice configurations
TAMIL_VOICES = {
'Female 1': {'gender': 'female', 'age': 'adult', 'style': 'normal'},
'Female 2': {'gender': 'female', 'age': 'adult', 'style': 'formal'},
'Male 1': {'gender': 'male', 'age': 'adult', 'style': 'normal'},
'Male 2': {'gender': 'male', 'age': 'adult', 'style': 'formal'},
}
# Tamil-specific pronunciations and replacements
TAMIL_PRONUNCIATIONS = {
'zh': 'l', # Handle special Tamil character ழ
'L': 'l', # Handle special Tamil character ள
'N': 'n', # Handle special Tamil character ண
'R': 'r', # Handle special Tamil character ற
}
class TamilTextProcessor:
@staticmethod
def normalize_tamil_text(text):
"""Normalize Tamil text for better pronunciation"""
# Convert Tamil numerals to English numerals
tamil_numerals = {'௦': '0', '௧': '1', '௨': '2', '௩': '3', '௪': '4',
'௫': '5', '௬': '6', '௭': '7', '௮': '8', '௯': '9'}
for tamil_num, eng_num in tamil_numerals.items():
text = text.replace(tamil_num, eng_num)
# Handle special characters and combinations
text = text.replace('ஜ்ஞ', 'க்ய') # Replace complex character combinations
return text
@staticmethod
def split_tamil_sentences(text):
"""Split Tamil text into natural sentence boundaries"""
sentence_endings = ['।', '.', '!', '?', '॥']
sentences = []
current_sentence = ''
for char in text:
current_sentence += char
if char in sentence_endings:
sentences.append(current_sentence.strip())
current_sentence = ''
if current_sentence:
sentences.append(current_sentence.strip())
return sentences
class TamilAudioProcessor:
@staticmethod
def adjust_tamil_audio(audio_segment):
"""Adjust audio characteristics for Tamil speech"""
# Enhance clarity of Tamil consonants
enhanced_audio = audio_segment.high_pass_filter(80)
enhanced_audio = enhanced_audio.low_pass_filter(8000)
# Adjust speed slightly for better comprehension
enhanced_audio = enhanced_audio.speedup(playback_speed=0.95)
return enhanced_audio
@staticmethod
def match_emotion(audio_segment, emotion_type):
"""Adjust audio based on emotional context"""
if emotion_type == 'happy':
return audio_segment.apply_gain(2).high_pass_filter(100)
elif emotion_type == 'sad':
return audio_segment.apply_gain(-1).low_pass_filter(3000)
elif emotion_type == 'angry':
return audio_segment.apply_gain(4).high_pass_filter(200)
return audio_segment
class TamilVideoDubber:
def __init__(self, azure_key=None, azure_region=None):
self.whisper_model = whisper.load_model("base")
self.temp_files = []
self.azure_key = azure_key
self.azure_region = azure_region
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.cleanup()
def cleanup(self):
for temp_file in self.temp_files:
if os.path.exists(temp_file):
os.remove(temp_file)
def create_temp_file(self, suffix):
temp_file = tempfile.mktemp(suffix=suffix)
self.temp_files.append(temp_file)
return temp_file
def extract_audio_segments(self, video_path):
"""Extract audio segments with emotion detection"""
video = VideoFileClip(video_path)
result = self.whisper_model.transcribe(video_path)
segments = []
for segment in result["segments"]:
# Basic emotion detection based on punctuation and keywords
emotion = self.detect_emotion(segment["text"])
segments.append({
"text": segment["text"],
"start": segment["start"],
"end": segment["end"],
"duration": segment["end"] - segment["start"],
"emotion": emotion
})
return segments, video.duration
def detect_emotion(self, text):
"""Simple emotion detection based on text analysis"""
happy_words = ['happy', 'joy', 'laugh', 'smile', 'மகிழ்ச்சி']
sad_words = ['sad', 'sorry', 'cry', 'வருத்தம்']
angry_words = ['angry', 'hate', 'கோபம்']
text_lower = text.lower()
if any(word in text_lower for word in happy_words):
return 'happy'
elif any(word in text_lower for word in sad_words):
return 'sad'
elif any(word in text_lower for word in angry_words):
return 'angry'
return 'neutral'
def translate_to_tamil(self, text):
"""Translate text to Tamil with context preservation"""
translator = Translator(to_lang='ta')
translated = translator.translate(text)
return TamilTextProcessor.normalize_tamil_text(translated)
def generate_tamil_audio(self, text, voice_config, emotion='neutral'):
"""Generate Tamil audio using Azure TTS or gTTS"""
if self.azure_key and self.azure_region:
return self._generate_azure_tamil_audio(text, voice_config, emotion)
else:
return self._generate_gtts_tamil_audio(text, emotion)
def _generate_azure_tamil_audio(self, text, voice_config, emotion):
"""Generate Tamil audio using Azure Cognitive Services"""
speech_config = speechsdk.SpeechConfig(
subscription=self.azure_key, region=self.azure_region)
# Configure Tamil voice
speech_config.speech_synthesis_voice_name = "ta-IN-PallaviNeural"
# Create speech synthesizer
speech_synthesizer = speechsdk.SpeechSynthesizer(
speech_config=speech_config)
# Add SSML for emotion and style
ssml_text = f"""
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis">
<voice name="ta-IN-PallaviNeural">
<prosody rate="{self._get_emotion_rate(emotion)}"
pitch="{self._get_emotion_pitch(emotion)}">
{text}
</prosody>
</voice>
</speak>
"""
result = speech_synthesizer.speak_ssml_async(ssml_text).get()
if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
return AudioSegment.from_wav(io.BytesIO(result.audio_data))
else:
raise Exception("Speech synthesis failed")
def _generate_gtts_tamil_audio(self, text, emotion):
"""Fallback to gTTS for Tamil audio generation"""
temp_path = self.create_temp_file(".mp3")
tts = gTTS(text=text, lang='ta')
tts.save(temp_path)
audio = AudioSegment.from_mp3(temp_path)
# Apply emotion-based adjustments
audio = TamilAudioProcessor.match_emotion(audio, emotion)
return audio
@staticmethod
def _get_emotion_rate(emotion):
"""Get speech rate based on emotion"""
rates = {
'happy': '1.1',
'sad': '0.9',
'angry': '1.2',
'neutral': '1.0'
}
return rates.get(emotion, '1.0')
@staticmethod
def _get_emotion_pitch(emotion):
"""Get pitch adjustment based on emotion"""
pitches = {
'happy': '+1st',
'sad': '-1st',
'angry': '+2st',
'neutral': '0st'
}
return pitches.get(emotion, '0st')
def main():
st.title("Tamil Movie Dubbing System")
st.sidebar.header("Settings")
# Video upload
video_file = st.file_uploader("Upload your video", type=['mp4', 'mov', 'avi'])
if not video_file:
return
# Voice selection
selected_voice = st.selectbox("Select Tamil voice", list(TAMIL_VOICES.keys()))
# Advanced settings
with st.expander("Advanced Settings"):
generate_subtitles = st.checkbox("Generate Tamil subtitles", value=True)
adjust_audio = st.checkbox("Enhance Tamil audio clarity", value=True)
emotion_detection = st.checkbox("Enable emotion detection", value=True)
# Tamil font selection for subtitles
tamil_fonts = ["Latha", "Vijaya", "Mukta Malar"]
selected_font = st.selectbox("Select Tamil font", tamil_fonts)
# Audio enhancement options
if adjust_audio:
clarity_level = st.slider("Audio clarity level", 1, 5, 3)
bass_boost = st.slider("Bass boost", 0, 100, 50)
if st.button("Start Tamil Dubbing"):
with st.spinner("Processing your video..."):
try:
with TamilVideoDubber() as dubber:
# Save uploaded video
temp_video_path = dubber.create_temp_file(".mp4")
with open(temp_video_path, "wb") as f:
f.write(video_file.read())
# Process video with progress tracking
progress_bar = st.progress(0)
status_text = st.empty()
# Extract and analyze segments
status_text.text("Analyzing video...")
segments, duration = dubber.extract_audio_segments(
temp_video_path)
progress_bar.progress(0.25)
# Translation and audio generation
status_text.text("Generating Tamil audio...")
final_audio = AudioSegment.empty()
for i, segment in enumerate(segments):
# Translate to Tamil
tamil_text = dubber.translate_to_tamil(segment["text"])
# Generate Tamil audio
segment_audio = dubber.generate_tamil_audio(
tamil_text,
TAMIL_VOICES[selected_voice],
segment["emotion"] if emotion_detection else 'neutral'
)
# Apply audio enhancements
if adjust_audio:
segment_audio = TamilAudioProcessor.adjust_tamil_audio(
segment_audio)
# Add to final audio
if len(final_audio) < segment["start"] * 1000:
silence_duration = (segment["start"] * 1000 -
len(final_audio))
final_audio += AudioSegment.silent(
duration=silence_duration)
final_audio += segment_audio
# Update progress
progress_bar.progress(0.25 + (0.5 * (i + 1) /
len(segments)))
# Generate final video with subtitles
status_text.text("Creating final video...")
output_path = dubber.create_temp_file(".mp4")
video = VideoFileClip(temp_video_path)
video = video.set_audio(AudioFileClip(final_audio))
if generate_subtitles:
# Add Tamil subtitles
subtitle_clips = []
for segment in segments:
tamil_text = dubber.translate_to_tamil(segment["text"])
subtitle_clip = TextClip(
tamil_text,
fontsize=24,
font=selected_font,
color='white',
stroke_color='black',
stroke_width=1
)
subtitle_clip = subtitle_clip.set_position(
('center', 'bottom')
).set_duration(
segment["end"] - segment["start"]
).set_start(segment["start"])
subtitle_clips.append(subtitle_clip)
video = CompositeVideoClip([video] + subtitle_clips)
# Write final video
video.write_videofile(output_path, codec='libx264',
audio_codec='aac')
progress_bar.progress(1.0)
# Display result
st.success("Tamil dubbing completed!")
st.video(output_path)
# Provide download button
with open(output_path, "rb") as f:
st.download_button(
"Download Tamil Dubbed Video",
f,
file_name="tamil_dubbed_video.mp4"
)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if __name__ == "__main__":
main()