Artificial-superintelligence
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,299 +1,196 @@
|
|
1 |
import streamlit as st
|
2 |
-
from moviepy.editor import VideoFileClip, AudioFileClip,
|
3 |
import whisper
|
4 |
-
from
|
5 |
from gtts import gTTS
|
|
|
6 |
import tempfile
|
7 |
import os
|
8 |
import numpy as np
|
9 |
-
import
|
10 |
-
|
11 |
-
import
|
12 |
-
|
13 |
-
# Set page configuration
|
14 |
-
st.set_page_config(
|
15 |
-
page_title="Tamil Movie Dubber",
|
16 |
-
page_icon="🎬",
|
17 |
-
layout="wide"
|
18 |
-
)
|
19 |
-
|
20 |
-
# Custom CSS
|
21 |
-
st.markdown("""
|
22 |
-
<style>
|
23 |
-
.stButton>button {
|
24 |
-
width: 100%;
|
25 |
-
border-radius: 5px;
|
26 |
-
height: 3em;
|
27 |
-
background-color: #FF4B4B;
|
28 |
-
color: white;
|
29 |
-
}
|
30 |
-
.stProgress .st-bo {
|
31 |
-
background-color: #FF4B4B;
|
32 |
-
}
|
33 |
-
</style>
|
34 |
-
""", unsafe_allow_html=True)
|
35 |
-
|
36 |
-
# Tamil voice configurations
|
37 |
-
TAMIL_VOICES = {
|
38 |
-
'Female 1': {'name': 'ta-IN-PallaviNeural', 'style': 'normal'},
|
39 |
-
'Female 2': {'name': 'ta-IN-PallaviNeural', 'style': 'formal'},
|
40 |
-
'Male 1': {'name': 'ta-IN-ValluvarNeural', 'style': 'normal'},
|
41 |
-
'Male 2': {'name': 'ta-IN-ValluvarNeural', 'style': 'formal'}
|
42 |
-
}
|
43 |
-
|
44 |
-
class TamilTextProcessor:
|
45 |
-
@staticmethod
|
46 |
-
def normalize_tamil_text(text):
|
47 |
-
"""Normalize Tamil text for better pronunciation"""
|
48 |
-
tamil_numerals = {'௦': '0', '௧': '1', '௨': '2', '௩': '3', '௪': '4',
|
49 |
-
'௫': '5', '௬': '6', '௭': '7', '௮': '8', '௯': '9'}
|
50 |
-
for tamil_num, eng_num in tamil_numerals.items():
|
51 |
-
text = text.replace(tamil_num, eng_num)
|
52 |
-
return text
|
53 |
-
|
54 |
-
@staticmethod
|
55 |
-
def process_for_tts(text):
|
56 |
-
"""Process Tamil text for TTS"""
|
57 |
-
text = ''.join(char for char in text if ord(char) < 65535)
|
58 |
-
text = ' '.join(text.split())
|
59 |
-
return text
|
60 |
|
|
|
61 |
@st.cache_resource
|
62 |
-
def
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
try:
|
78 |
-
shutil.rmtree(self.temp_dir)
|
79 |
-
except Exception as e:
|
80 |
-
st.warning(f"Cleanup warning: {e}")
|
81 |
-
|
82 |
-
def transcribe_video(self, video_path):
|
83 |
-
"""Transcribe video audio using Whisper"""
|
84 |
-
try:
|
85 |
-
with VideoFileClip(video_path) as video:
|
86 |
-
# Extract audio to temporary file
|
87 |
-
audio_path = self.create_temp_path(".wav")
|
88 |
-
video.audio.write_audiofile(audio_path, fps=16000, verbose=False, logger=None)
|
89 |
-
|
90 |
-
# Check if audio file is not empty
|
91 |
-
if os.path.getsize(audio_path) == 0:
|
92 |
-
raise ValueError("Extracted audio file is empty")
|
93 |
-
|
94 |
-
# Transcribe using Whisper
|
95 |
-
result = self.whisper_model.transcribe(audio_path)
|
96 |
-
return result["segments"], video.duration
|
97 |
-
|
98 |
-
except Exception as e:
|
99 |
-
raise Exception(f"Transcription error: {str(e)}")
|
100 |
-
|
101 |
-
def translate_segments(self, segments):
|
102 |
-
"""Translate segments to Tamil"""
|
103 |
-
translator = Translator(to_lang='ta')
|
104 |
-
translated_segments = []
|
105 |
-
|
106 |
-
for segment in segments:
|
107 |
-
try:
|
108 |
-
translated_text = translator.translate(segment["text"])
|
109 |
-
translated_text = TamilTextProcessor.normalize_tamil_text(translated_text)
|
110 |
-
translated_text = TamilTextProcessor.process_for_tts(translated_text)
|
111 |
-
|
112 |
-
translated_segments.append({
|
113 |
-
"text": translated_text,
|
114 |
-
"start": segment["start"],
|
115 |
-
"end": segment["end"],
|
116 |
-
"duration": segment["end"] - segment["start"]
|
117 |
-
})
|
118 |
-
except Exception as e:
|
119 |
-
st.warning(f"Translation warning for segment: {str(e)}")
|
120 |
-
# Keep original text if translation fails
|
121 |
-
translated_segments.append({
|
122 |
-
"text": segment["text"],
|
123 |
-
"start": segment["start"],
|
124 |
-
"end": segment["end"],
|
125 |
-
"duration": segment["end"] - segment["start"]
|
126 |
-
})
|
127 |
-
|
128 |
-
return translated_segments
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
try:
|
133 |
-
audio_path = self.create_temp_path(".mp3")
|
134 |
-
tts = gTTS(text=text, lang='ta', slow=False)
|
135 |
-
tts.save(audio_path)
|
136 |
-
time.sleep(1) # Adding delay to avoid rate limit issues
|
137 |
-
return audio_path
|
138 |
-
except Exception as e:
|
139 |
-
raise Exception(f"Audio generation error: {str(e)}")
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
# Create progress tracking
|
166 |
-
progress_text = st.empty()
|
167 |
-
progress_bar = st.progress(0)
|
168 |
-
|
169 |
-
# Step 1: Transcribe
|
170 |
-
progress_text.text("Transcribing video...")
|
171 |
-
segments, duration = processor.transcribe_video(input_path)
|
172 |
-
progress_bar.progress(0.25)
|
173 |
-
|
174 |
-
# Step 2: Translate
|
175 |
-
progress_text.text("Translating to Tamil...")
|
176 |
-
translated_segments = processor.translate_segments(segments)
|
177 |
-
progress_bar.progress(0.50)
|
178 |
-
|
179 |
-
# Step 3: Generate audio
|
180 |
-
progress_text.text("Generating Tamil audio...")
|
181 |
-
subtitle_clips = []
|
182 |
-
audio_clips = []
|
183 |
-
|
184 |
-
for i, segment in enumerate(translated_segments):
|
185 |
-
# Generate audio
|
186 |
-
audio_path = processor.generate_tamil_audio(segment["text"])
|
187 |
-
audio_clip = AudioFileClip(audio_path)
|
188 |
-
audio_clips.append(audio_clip.set_start(segment["start"]))
|
189 |
-
|
190 |
-
# Create subtitle if enabled
|
191 |
-
if generate_subtitles:
|
192 |
-
subtitle_clip = processor.create_subtitle_clip(
|
193 |
-
segment["text"],
|
194 |
-
subtitle_size,
|
195 |
-
subtitle_color,
|
196 |
-
(video.w, None)
|
197 |
-
)
|
198 |
-
subtitle_clip = (subtitle_clip
|
199 |
-
.set_position(('center', 'bottom'))
|
200 |
-
.set_start(segment["start"])
|
201 |
-
.set_duration(segment["duration"]))
|
202 |
-
subtitle_clips.append(subtitle_clip)
|
203 |
-
|
204 |
-
progress_bar.progress(0.50 + (0.4 * (i + 1) / len(translated_segments)))
|
205 |
-
|
206 |
-
# Step 4: Combine everything
|
207 |
-
progress_text.text("Creating final video...")
|
208 |
-
|
209 |
-
# Combine audio clips
|
210 |
-
final_audio = concatenate_audioclips(audio_clips)
|
211 |
-
|
212 |
-
# Create final video
|
213 |
-
if generate_subtitles:
|
214 |
-
final_video = CompositeVideoClip([video, *subtitle_clips])
|
215 |
-
else:
|
216 |
-
final_video = video
|
217 |
-
|
218 |
-
# Set audio
|
219 |
-
final_video = final_video.set_audio(final_audio)
|
220 |
-
|
221 |
-
# Write final video
|
222 |
-
output_path = processor.create_temp_path(".mp4")
|
223 |
-
final_video.write_videofile(
|
224 |
-
output_path,
|
225 |
-
codec='libx264',
|
226 |
-
audio_codec='aac',
|
227 |
-
temp_audiofile=processor.create_temp_path(".m4a"),
|
228 |
-
remove_temp=True,
|
229 |
-
verbose=False,
|
230 |
-
logger=None
|
231 |
-
)
|
232 |
-
|
233 |
-
progress_bar.progress(1.0)
|
234 |
-
progress_text.text("Processing complete!")
|
235 |
-
|
236 |
-
return output_path
|
237 |
-
|
238 |
-
except Exception as e:
|
239 |
-
raise Exception(f"Video processing error: {str(e)}")
|
240 |
-
|
241 |
-
finally:
|
242 |
-
# Cleanup
|
243 |
-
processor.cleanup()
|
244 |
|
245 |
def main():
|
246 |
-
st.title("Tamil
|
247 |
-
st.markdown(""
|
248 |
-
👋 Welcome! This tool helps you:
|
249 |
-
- 🎥 Convert English videos to Tamil
|
250 |
-
- 🗣️ Generate Tamil voiceovers
|
251 |
-
- 📝 Add Tamil subtitles
|
252 |
-
""")
|
253 |
-
|
254 |
-
# File uploader
|
255 |
-
video_file = st.file_uploader("Upload Video File", type=['mp4', 'mov', 'avi'])
|
256 |
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
259 |
return
|
|
|
|
|
|
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
subtitle_color = st.color_picker("Subtitle Color", "#FFFFFF")
|
276 |
-
|
277 |
-
# Process video
|
278 |
-
if st.button("Process Video"):
|
279 |
-
with st.spinner("Processing video..."):
|
280 |
try:
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
except Exception as e:
|
296 |
-
st.error(f"
|
297 |
-
|
|
|
298 |
if __name__ == "__main__":
|
299 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_audioclips
|
3 |
import whisper
|
4 |
+
from transformers import MBartForConditionalGeneration, MBartTokenizer
|
5 |
from gtts import gTTS
|
6 |
+
import torch
|
7 |
import tempfile
|
8 |
import os
|
9 |
import numpy as np
|
10 |
+
from pydub import AudioSegment
|
11 |
+
import librosa
|
12 |
+
import warnings
|
13 |
+
warnings.filterwarnings('ignore')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Initialize models and configs
|
16 |
@st.cache_resource
|
17 |
+
def load_models():
|
18 |
+
whisper_model = whisper.load_model("large")
|
19 |
+
tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
20 |
+
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
21 |
+
return whisper_model, tokenizer, model
|
22 |
+
|
23 |
+
# Tamil language configuration
|
24 |
+
TAMIL_CONFIG = {
|
25 |
+
'code': 'ta',
|
26 |
+
'whisper_code': 'tamil',
|
27 |
+
'mbart_code': 'ta_IN',
|
28 |
+
'gtts_code': 'ta',
|
29 |
+
'voice_speed': 1.1, # Adjust speed for better sync
|
30 |
+
'sample_rate': 22050
|
31 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# Streamlit UI setup
|
34 |
+
st.set_page_config(page_title="Tamil Video Dubbing AI", page_icon="🎥", layout="wide")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
def create_custom_style():
|
37 |
+
st.markdown("""
|
38 |
+
<style>
|
39 |
+
.stApp {
|
40 |
+
background-color: #f5f5f5;
|
41 |
+
}
|
42 |
+
.main {
|
43 |
+
padding: 2rem;
|
44 |
+
}
|
45 |
+
.stButton>button {
|
46 |
+
background-color: #FF4B4B;
|
47 |
+
color: white;
|
48 |
+
font-weight: bold;
|
49 |
+
}
|
50 |
+
</style>
|
51 |
+
""", unsafe_allow_html=True)
|
52 |
|
53 |
+
create_custom_style()
|
54 |
+
|
55 |
+
def translate_text(text, tokenizer, model):
|
56 |
+
"""Enhanced translation specifically for Tamil using MBart"""
|
57 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
58 |
+
translated_tokens = model.generate(
|
59 |
+
**inputs,
|
60 |
+
forced_bos_token_id=tokenizer.lang_code_to_id["ta_IN"],
|
61 |
+
num_beams=5,
|
62 |
+
length_penalty=1.0,
|
63 |
+
max_length=512,
|
64 |
+
min_length=0,
|
65 |
+
do_sample=True,
|
66 |
+
temperature=0.7
|
67 |
+
)
|
68 |
+
return tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
69 |
+
|
70 |
+
def process_audio_for_sync(audio_path, target_speed=1.0):
|
71 |
+
"""Process audio for better synchronization"""
|
72 |
+
audio = AudioSegment.from_file(audio_path)
|
73 |
|
74 |
+
# Adjust speed without changing pitch
|
75 |
+
if target_speed != 1.0:
|
76 |
+
sound_with_altered_frame_rate = audio._spawn(audio.raw_data, overrides={
|
77 |
+
"frame_rate": int(audio.frame_rate * target_speed)
|
78 |
+
})
|
79 |
+
audio = sound_with_altered_frame_rate.set_frame_rate(audio.frame_rate)
|
80 |
+
|
81 |
+
return audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
def main():
|
84 |
+
st.title("🎥 Tamil Video Dubbing AI")
|
85 |
+
st.markdown("### Advanced Video Translation and Dubbing System")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# Load models
|
88 |
+
try:
|
89 |
+
with st.spinner("Loading AI models..."):
|
90 |
+
whisper_model, tokenizer, translation_model = load_models()
|
91 |
+
st.success("Models loaded successfully! 🚀")
|
92 |
+
except Exception as e:
|
93 |
+
st.error(f"Error loading models: {e}")
|
94 |
return
|
95 |
+
|
96 |
+
# File uploader with progress
|
97 |
+
video_file = st.file_uploader("Upload your video file", type=["mp4", "mov", "avi"])
|
98 |
|
99 |
+
if video_file:
|
100 |
+
# Video preview
|
101 |
+
st.video(video_file)
|
102 |
+
|
103 |
+
# Advanced settings
|
104 |
+
with st.expander("Advanced Settings"):
|
105 |
+
voice_speed = st.slider("Voice Speed", 0.5, 1.5, TAMIL_CONFIG['voice_speed'], 0.1)
|
106 |
+
quality_level = st.select_slider(
|
107 |
+
"Translation Quality",
|
108 |
+
options=["Draft", "Standard", "High Quality"],
|
109 |
+
value="Standard"
|
110 |
+
)
|
111 |
+
|
112 |
+
if st.button("Start Tamil Dubbing", key="start_dubbing"):
|
|
|
|
|
|
|
|
|
|
|
113 |
try:
|
114 |
+
with st.spinner("Processing your video..."):
|
115 |
+
# Save uploaded video
|
116 |
+
temp_video_path = tempfile.mktemp(suffix='.mp4')
|
117 |
+
with open(temp_video_path, 'wb') as f:
|
118 |
+
f.write(video_file.read())
|
119 |
+
|
120 |
+
# Process steps with progress bar
|
121 |
+
progress_bar = st.progress(0)
|
122 |
+
status_text = st.empty()
|
123 |
+
|
124 |
+
# Extract audio
|
125 |
+
status_text.text("Extracting audio...")
|
126 |
+
video = VideoFileClip(temp_video_path)
|
127 |
+
audio_path = tempfile.mktemp(suffix=".wav")
|
128 |
+
video.audio.write_audiofile(audio_path, fps=TAMIL_CONFIG['sample_rate'])
|
129 |
+
progress_bar.progress(20)
|
130 |
+
|
131 |
+
# Transcribe
|
132 |
+
status_text.text("Transcribing audio...")
|
133 |
+
result = whisper_model.transcribe(audio_path, language=TAMIL_CONFIG['whisper_code'])
|
134 |
+
original_text = result["text"]
|
135 |
+
progress_bar.progress(40)
|
136 |
+
|
137 |
+
# Translate
|
138 |
+
status_text.text("Translating to Tamil...")
|
139 |
+
translated_text = translate_text(original_text, tokenizer, translation_model)
|
140 |
+
progress_bar.progress(60)
|
141 |
+
|
142 |
+
# Generate Tamil speech
|
143 |
+
status_text.text("Generating Tamil speech...")
|
144 |
+
tts = gTTS(text=translated_text, lang=TAMIL_CONFIG['gtts_code'])
|
145 |
+
translated_audio_path = tempfile.mktemp(suffix=".mp3")
|
146 |
+
tts.save(translated_audio_path)
|
147 |
+
progress_bar.progress(80)
|
148 |
+
|
149 |
+
# Final video creation
|
150 |
+
status_text.text("Creating final video...")
|
151 |
+
dubbed_audio = process_audio_for_sync(translated_audio_path, voice_speed)
|
152 |
+
final_audio_path = tempfile.mktemp(suffix=".wav")
|
153 |
+
dubbed_audio.export(final_audio_path, format="wav")
|
154 |
+
|
155 |
+
# Combine video with new audio
|
156 |
+
final_video_path = tempfile.mktemp(suffix=".mp4")
|
157 |
+
final_audio = AudioFileClip(final_audio_path)
|
158 |
+
final_video = video.set_audio(final_audio)
|
159 |
+
final_video.write_videofile(final_video_path, codec='libx264', audio_codec='aac')
|
160 |
+
progress_bar.progress(100)
|
161 |
+
|
162 |
+
# Display results
|
163 |
+
st.success("Video dubbed successfully! 🎉")
|
164 |
+
st.video(final_video_path)
|
165 |
+
|
166 |
+
# Download options
|
167 |
+
col1, col2 = st.columns(2)
|
168 |
+
with col1:
|
169 |
+
with open(final_video_path, "rb") as f:
|
170 |
+
st.download_button(
|
171 |
+
"Download Dubbed Video",
|
172 |
+
f,
|
173 |
+
file_name="tamil_dubbed_video.mp4",
|
174 |
+
mime="video/mp4"
|
175 |
+
)
|
176 |
|
177 |
+
with col2:
|
178 |
+
st.download_button(
|
179 |
+
"Download Tamil Script",
|
180 |
+
translated_text,
|
181 |
+
file_name="tamil_script.txt",
|
182 |
+
mime="text/plain"
|
183 |
+
)
|
184 |
+
|
185 |
+
# Clean up
|
186 |
+
for path in [temp_video_path, audio_path, translated_audio_path,
|
187 |
+
final_audio_path, final_video_path]:
|
188 |
+
if os.path.exists(path):
|
189 |
+
os.remove(path)
|
190 |
+
|
191 |
except Exception as e:
|
192 |
+
st.error(f"An error occurred: {e}")
|
193 |
+
st.info("Please try again with a different video or check your internet connection.")
|
194 |
+
|
195 |
if __name__ == "__main__":
|
196 |
+
main()
|