Artificial-superintelligence commited on
Commit
50bc70e
·
verified ·
1 Parent(s): 6dd0a53

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +624 -0
app.py ADDED
@@ -0,0 +1,624 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import google.generativeai as genai
3
+ import requests
4
+ import subprocess
5
+ import os
6
+ import pylint
7
+ import pandas as pd
8
+ from sklearn.model_selection import train_test_split
9
+ from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
10
+ from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
11
+ import git
12
+ import spacy
13
+ from spacy.lang.en import English
14
+ import boto3
15
+ import unittest
16
+ import docker
17
+ import sympy as sp
18
+ from scipy.optimize import minimize, differential_evolution
19
+ import numpy as np
20
+ import matplotlib.pyplot as plt
21
+ import seaborn as sns
22
+ from IPython.display import display
23
+ from tenacity import retry, stop_after_attempt, wait_fixed
24
+ import torch
25
+ import torch.nn as nn
26
+ import torch.optim as optim
27
+ from transformers import AutoTokenizer, AutoModel
28
+ import networkx as nx
29
+ from sklearn.cluster import KMeans
30
+ from scipy.stats import ttest_ind
31
+ from statsmodels.tsa.arima.model import ARIMA
32
+ import nltk
33
+ from nltk.sentiment import SentimentIntensityAnalyzer
34
+ import cv2
35
+ from PIL import Image
36
+ import tensorflow as tf
37
+ from tensorflow.keras.applications import ResNet50
38
+ from tensorflow.keras.preprocessing import image
39
+ from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
40
+
41
+ # Configure the Gemini API
42
+ genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
43
+
44
+ # Create the model with optimized parameters and enhanced system instructions
45
+ generation_config = {
46
+ "temperature": 0.4,
47
+ "top_p": 0.8,
48
+ "top_k": 50,
49
+ "max_output_tokens": 4096,
50
+ }
51
+
52
+ model = genai.GenerativeModel(
53
+ model_name="gemini-1.5-pro",
54
+ generation_config=generation_config,
55
+ system_instruction="""
56
+ You are Ath, an ultra-advanced AI code assistant with expertise across multiple domains including machine learning, data science, web development, cloud computing, and more. Your responses should showcase cutting-edge techniques, best practices, and innovative solutions.
57
+ """
58
+ )
59
+ chat_session = model.start_chat(history=[])
60
+
61
+ @retry(stop=stop_after_attempt(5), wait=wait_fixed(2))
62
+ def generate_response(user_input):
63
+ try:
64
+ response = chat_session.send_message(user_input)
65
+ return response.text
66
+ except Exception as e:
67
+ return f"Error: {e}"
68
+
69
+ def optimize_code(code):
70
+ with open("temp_code.py", "w") as file:
71
+ file.write(code)
72
+ result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
73
+ os.remove("temp_code.py")
74
+ return code
75
+
76
+ def fetch_from_github(query):
77
+ # Implement GitHub API interaction here
78
+ pass
79
+
80
+ def interact_with_api(api_url):
81
+ response = requests.get(api_url)
82
+ return response.json()
83
+
84
+ def train_advanced_ml_model(X, y):
85
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
86
+ models = {
87
+ 'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42),
88
+ 'Gradient Boosting': GradientBoostingClassifier(n_estimators=100, random_state=42)
89
+ }
90
+ results = {}
91
+ for name, model in models.items():
92
+ model.fit(X_train, y_train)
93
+ y_pred = model.predict(X_test)
94
+ results[name] = {
95
+ 'accuracy': accuracy_score(y_test, y_pred),
96
+ 'precision': precision_score(y_test, y_pred, average='weighted'),
97
+ 'recall': recall_score(y_test, y_pred, average='weighted'),
98
+ 'f1': f1_score(y_test, y_pred, average='weighted')
99
+ }
100
+ return results
101
+
102
+ def handle_error(error):
103
+ st.error(f"An error occurred: {error}")
104
+ # Implement advanced error logging and notification system here
105
+
106
+ def initialize_git_repo(repo_path):
107
+ if not os.path.exists(repo_path):
108
+ os.makedirs(repo_path)
109
+ if not os.path.exists(os.path.join(repo_path, '.git')):
110
+ repo = git.Repo.init(repo_path)
111
+ else:
112
+ repo = git.Repo(repo_path)
113
+ return repo
114
+
115
+ def integrate_with_git(repo_path, code):
116
+ repo = initialize_git_repo(repo_path)
117
+ with open(os.path.join(repo_path, "generated_code.py"), "w") as file:
118
+ file.write(code)
119
+ repo.index.add(["generated_code.py"])
120
+ repo.index.commit("Added generated code")
121
+
122
+ def process_user_input(user_input):
123
+ nlp = spacy.load("en_core_web_sm")
124
+ doc = nlp(user_input)
125
+ return doc
126
+
127
+ def interact_with_cloud_services(service_name, action, params):
128
+ client = boto3.client(service_name)
129
+ response = getattr(client, action)(**params)
130
+ return response
131
+
132
+ def run_tests():
133
+ tests_dir = os.path.join(os.getcwd(), 'tests')
134
+ if not os.path.exists(tests_dir):
135
+ os.makedirs(tests_dir)
136
+ init_file = os.path.join(tests_dir, '__init__.py')
137
+ if not os.path.exists(init_file):
138
+ with open(init_file, 'w') as f:
139
+ f.write('')
140
+
141
+ test_suite = unittest.TestLoader().discover(tests_dir)
142
+ test_runner = unittest.TextTestRunner()
143
+ test_result = test_runner.run(test_suite)
144
+ return test_result
145
+
146
+ def execute_code_in_docker(code):
147
+ client = docker.from_env()
148
+ try:
149
+ container = client.containers.run(
150
+ image="python:3.9",
151
+ command=f"python -c '{code}'",
152
+ detach=True,
153
+ remove=True
154
+ )
155
+ result = container.wait()
156
+ logs = container.logs().decode('utf-8')
157
+ return logs, result['StatusCode']
158
+ except Exception as e:
159
+ return f"Error: {e}", 1
160
+
161
+ def solve_complex_equation(equation):
162
+ x, y, z = sp.symbols('x y z')
163
+ eq = sp.Eq(eval(equation))
164
+ solution = sp.solve(eq)
165
+ return solution
166
+
167
+ def advanced_optimization(function, bounds):
168
+ result = differential_evolution(lambda x: eval(function), bounds)
169
+ return result.x, result.fun
170
+
171
+ def visualize_complex_data(data):
172
+ df = pd.DataFrame(data)
173
+ fig, axs = plt.subplots(2, 2, figsize=(16, 12))
174
+
175
+ sns.heatmap(df.corr(), annot=True, cmap='coolwarm', ax=axs[0, 0])
176
+ axs[0, 0].set_title('Correlation Heatmap')
177
+
178
+ sns.pairplot(df, diag_kind='kde', ax=axs[0, 1])
179
+ axs[0, 1].set_title('Pairplot')
180
+
181
+ df.plot(kind='box', ax=axs[1, 0])
182
+ axs[1, 0].set_title('Box Plot')
183
+
184
+ sns.violinplot(data=df, ax=axs[1, 1])
185
+ axs[1, 1].set_title('Violin Plot')
186
+
187
+ plt.tight_layout()
188
+ return fig
189
+
190
+ def analyze_complex_data(data):
191
+ df = pd.DataFrame(data)
192
+ summary = df.describe()
193
+ correlation = df.corr()
194
+ skewness = df.skew()
195
+ kurtosis = df.kurtosis()
196
+ return {
197
+ 'summary': summary,
198
+ 'correlation': correlation,
199
+ 'skewness': skewness,
200
+ 'kurtosis': kurtosis
201
+ }
202
+
203
+ def train_deep_learning_model(X, y):
204
+ class DeepNN(nn.Module):
205
+ def __init__(self, input_size):
206
+ super(DeepNN, self).__init__()
207
+ self.fc1 = nn.Linear(input_size, 64)
208
+ self.fc2 = nn.Linear(64, 32)
209
+ self.fc3 = nn.Linear(32, 1)
210
+
211
+ def forward(self, x):
212
+ x = torch.relu(self.fc1(x))
213
+ x = torch.relu(self.fc2(x))
214
+ x = torch.sigmoid(self.fc3(x))
215
+ return x
216
+
217
+ X_tensor = torch.FloatTensor(X.values)
218
+ y_tensor = torch.FloatTensor(y.values)
219
+
220
+ model = DeepNN(X.shape[1])
221
+ criterion = nn.BCELoss()
222
+ optimizer = optim.Adam(model.parameters())
223
+
224
+ epochs = 100
225
+ for epoch in range(epochs):
226
+ optimizer.zero_grad()
227
+ outputs = model(X_tensor)
228
+ loss = criterion(outputs, y_tensor.unsqueeze(1))
229
+ loss.backward()
230
+ optimizer.step()
231
+
232
+ return model
233
+
234
+ def perform_nlp_analysis(text):
235
+ nlp = spacy.load("en_core_web_sm")
236
+ doc = nlp(text)
237
+
238
+ entities = [(ent.text, ent.label_) for ent in doc.ents]
239
+ tokens = [token.text for token in doc]
240
+ pos_tags = [(token.text, token.pos_) for token in doc]
241
+
242
+ sia = SentimentIntensityAnalyzer()
243
+ sentiment = sia.polarity_scores(text)
244
+
245
+ return {
246
+ 'entities': entities,
247
+ 'tokens': tokens,
248
+ 'pos_tags': pos_tags,
249
+ 'sentiment': sentiment
250
+ }
251
+
252
+ def perform_image_analysis(image_path):
253
+ img = cv2.imread(image_path)
254
+ img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
255
+
256
+ # Perform object detection
257
+ model = ResNet50(weights='imagenet')
258
+ img_resized = cv2.resize(img_rgb, (224, 224))
259
+ img_array = image.img_to_array(img_resized)
260
+ img_array = np.expand_dims(img_array, axis=0)
261
+ img_array = preprocess_input(img_array)
262
+
263
+ predictions = model.predict(img_array)
264
+ decoded_predictions = decode_predictions(predictions, top=3)[0]
265
+
266
+ # Perform edge detection
267
+ edges = cv2.Canny(img, 100, 200)
268
+
269
+ return {
270
+ 'predictions': decoded_predictions,
271
+ 'edges': edges
272
+ }
273
+
274
+ def perform_time_series_analysis(data):
275
+ df = pd.DataFrame(data)
276
+ model = ARIMA(df, order=(1, 1, 1))
277
+ results = model.fit()
278
+ forecast = results.forecast(steps=5)
279
+ return {
280
+ 'model_summary': results.summary(),
281
+ 'forecast': forecast
282
+ }
283
+
284
+ def perform_graph_analysis(nodes, edges):
285
+ G = nx.Graph()
286
+ G.add_nodes_from(nodes)
287
+ G.add_edges_from(edges)
288
+
289
+ centrality = nx.degree_centrality(G)
290
+ clustering = nx.clustering(G)
291
+ shortest_paths = dict(nx.all_pairs_shortest_path_length(G))
292
+
293
+ return {
294
+ 'centrality': centrality,
295
+ 'clustering': clustering,
296
+ 'shortest_paths': shortest_paths
297
+ }
298
+
299
+ # Streamlit UI setup
300
+ st.set_page_config(page_title="Ultra AI Code Assistant", page_icon="🚀", layout="wide")
301
+
302
+ # ... (Keep the existing CSS styles)
303
+
304
+ st.markdown('<div class="main-container">', unsafe_allow_html=True)
305
+ st.title("🚀 Ultra AI Code Assistant")
306
+ st.markdown('<p class="subtitle">Powered by Advanced AI and Domain Expertise</p>', unsafe_allow_html=True)
307
+
308
+ task_type = st.selectbox("Select Task Type", [
309
+ "Code Generation",
310
+ "Machine Learning",
311
+ "Data Analysis",
312
+ "Natural Language Processing",
313
+ "Image Analysis",
314
+ "Time Series Analysis",
315
+ "Graph Analysis"
316
+ ])
317
+
318
+ prompt = st.text_area("Enter your task description or code:", height=120)
319
+
320
+ if st.button("Execute Task"):
321
+ if prompt.strip() == "":
322
+ st.error("Please enter a valid prompt.")
323
+ else:
324
+ with st.spinner("Processing your request..."):
325
+ try:
326
+ if task_type == "Code Generation":
327
+ processed_input = process_user_input(prompt)
328
+ completed_text = generate_response(processed_input.text)
329
+ if "Error" in completed_text:
330
+ handle_error(completed_text)
331
+ else:
332
+ optimized_code = optimize_code(completed_text)
333
+ st.success("Code generated and optimized successfully!")
334
+
335
+ st.markdown('<div class="output-container">', unsafe_allow_html=True)
336
+ st.markdown('<div class="code-block">', unsafe_allow_html=True)
337
+ st.code(optimized_code)
338
+ st.markdown('</div>', unsafe_allow_html=True)
339
+ st.markdown('</div>', unsafe_allow_html=True)
340
+
341
+ repo_path = "./repo"
342
+ integrate_with_git(repo_path, optimized_code)
343
+
344
+ test_result = run_tests()
345
+ if test_result.wasSuccessful():
346
+ st.success("All tests passed successfully!")
347
+ else:
348
+ st.error("Some tests failed. Please check the code.")
349
+
350
+ execution_result, status_code = execute_code_in_docker(optimized_code)
351
+ if status_code == 0:
352
+ st.success("Code executed successfully in Docker!")
353
+ st.text(execution_result)
354
+ else:
355
+ st.error(f"Code execution failed: {execution_result}")
356
+
357
+ elif task_type == "Machine Learning":
358
+ # For demonstration, we'll use a sample dataset
359
+ from sklearn.datasets import make_classification
360
+ X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)
361
+ results = train_advanced_ml_model(X, y)
362
+ st.write("Machine Learning Model Performance:")
363
+ st.json(results)
364
+
365
+ st.write("Deep Learning Model:")
366
+ deep_model = train_deep_learning_model(pd.DataFrame(X), pd.Series(y))
367
+ st.write(deep_model)
368
+
369
+ elif task_type == "Data Analysis":
370
+ # For demonstration, we'll use a sample dataset
371
+ data = pd.DataFrame(np.random.randn(100, 5), columns=['A', 'B', 'C', 'D', 'E'])
372
+ analysis_results = analyze_complex_data(data)
373
+ st.write("Data Analysis Results:")
374
+ st.write(analysis_results['summary'])
375
+ st.write("Correlation Matrix:")
376
+ st.write(analysis_results['correlation'])
377
+
378
+ fig = visualize_complex_data(data)
379
+ st.pyplot(fig)
380
+
381
+ elif task_type == "Natural Language Processing":
382
+ nlp_results = perform_nlp_analysis(prompt)
383
+ st.write("NLP Analysis Results:")
384
+ st.json(nlp_results)
385
+
386
+ elif task_type == "Image Analysis":
387
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
388
+ if uploaded_file is not None:
389
+ image = Image.open(uploaded_file)
390
+ st.image(image, caption='Uploaded Image', use_column_width=True)
391
+
392
+ # Save the uploaded image temporarily
393
+ with open("temp_image.jpg", "wb") as f:
394
+ f.write(uploaded_file.getbuffer())
395
+
396
+ analysis_results = perform_image_analysis("temp_image.jpg")
397
+
398
+ st.write("Image Analysis Results:")
399
+ st.write("Top 3 predictions:")
400
+ for i, (imagenet_id, label, score) in enumerate(analysis_results['predictions']):
401
+ st.write(f"{i + 1}: {label} ({score:.2f})")
402
+
403
+ st.write("Edge Detection:")
404
+ st.image(analysis_results['edges'], caption='Edge Detection', use_column_width=True)
405
+
406
+ # Remove the temporary image file
407
+ os.remove("temp_image.jpg")
408
+
409
+ elif task_type == "Time Series Analysis":
410
+ # For demonstration, we'll use a sample time series dataset
411
+ dates = pd.date_range(start='1/1/2020', end='1/1/2021', freq='D')
412
+ values = np.random.randn(len(dates)).cumsum()
413
+ ts_data = pd.Series(values, index=dates)
414
+
415
+ st.line_chart(ts_data)
416
+
417
+ analysis_results = perform_time_series_analysis(ts_data)
418
+ st.write("Time Series Analysis Results:")
419
+ st.write(analysis_results['model_summary'])
420
+ st.write("Forecast for the next 5 periods:")
421
+ st.write(analysis_results['forecast'])
422
+
423
+ elif task_type == "Graph Analysis":
424
+ # For demonstration, we'll use a sample graph
425
+ nodes = range(1, 11)
426
+ edges = [(1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7), (4, 8), (5, 9), (6, 10)]
427
+
428
+ analysis_results = perform_graph_analysis(nodes, edges)
429
+ st.write("Graph Analysis Results:")
430
+ st.write("Centrality:")
431
+ st.json(analysis_results['centrality'])
432
+ st.write("Clustering Coefficient:")
433
+ st.json(analysis_results['clustering'])
434
+
435
+ # Visualize the graph
436
+ G = nx.Graph()
437
+ G.add_nodes_from(nodes)
438
+ G.add_edges_from(edges)
439
+ fig, ax = plt.subplots(figsize=(10, 8))
440
+ nx.draw(G, with_labels=True, node_color='lightblue', node_size=500, font_size=16, font_weight='bold', ax=ax)
441
+ st.pyplot(fig)
442
+
443
+ except Exception as e:
444
+ handle_error(e)
445
+
446
+ st.markdown("""
447
+ <div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
448
+ Created with ❤️ by Your Ultra AI Code Assistant
449
+ </div>
450
+ """, unsafe_allow_html=True)
451
+
452
+ st.markdown('</div>', unsafe_allow_html=True)
453
+
454
+ # Additional helper functions
455
+
456
+ def explain_code(code):
457
+ """Generate an explanation for the given code using NLP techniques."""
458
+ explanation = generate_response(f"Explain the following code:\n\n{code}")
459
+ return explanation
460
+
461
+ def generate_unit_tests(code):
462
+ """Generate unit tests for the given code."""
463
+ unit_tests = generate_response(f"Generate unit tests for the following code:\n\n{code}")
464
+ return unit_tests
465
+
466
+ def suggest_optimizations(code):
467
+ """Suggest optimizations for the given code."""
468
+ optimizations = generate_response(f"Suggest optimizations for the following code:\n\n{code}")
469
+ return optimizations
470
+
471
+ def generate_documentation(code):
472
+ """Generate documentation for the given code."""
473
+ documentation = generate_response(f"Generate documentation for the following code:\n\n{code}")
474
+ return documentation
475
+
476
+ # Add these new functions to the Streamlit UI
477
+ if task_type == "Code Generation":
478
+ st.sidebar.header("Code Analysis Tools")
479
+ if st.sidebar.button("Explain Code"):
480
+ explanation = explain_code(optimized_code)
481
+ st.sidebar.subheader("Code Explanation")
482
+ st.sidebar.write(explanation)
483
+
484
+ if st.sidebar.button("Generate Unit Tests"):
485
+ unit_tests = generate_unit_tests(optimized_code)
486
+ st.sidebar.subheader("Generated Unit Tests")
487
+ st.sidebar.code(unit_tests)
488
+
489
+ if st.sidebar.button("Suggest Optimizations"):
490
+ optimizations = suggest_optimizations(optimized_code)
491
+ st.sidebar.subheader("Suggested Optimizations")
492
+ st.sidebar.write(optimizations)
493
+
494
+ if st.sidebar.button("Generate Documentation"):
495
+ documentation = generate_documentation(optimized_code)
496
+ st.sidebar.subheader("Generated Documentation")
497
+ st.sidebar.write(documentation)
498
+
499
+ # Add more advanced features
500
+ def perform_security_analysis(code):
501
+ """Perform a basic security analysis on the given code."""
502
+ security_analysis = generate_response(f"Perform a security analysis on the following code and suggest improvements:\n\n{code}")
503
+ return security_analysis
504
+
505
+ def generate_api_documentation(code):
506
+ """Generate API documentation for the given code."""
507
+ api_docs = generate_response(f"Generate API documentation for the following code:\n\n{code}")
508
+ return api_docs
509
+
510
+ def suggest_design_patterns(code):
511
+ """Suggest appropriate design patterns for the given code."""
512
+ design_patterns = generate_response(f"Suggest appropriate design patterns for the following code:\n\n{code}")
513
+ return design_patterns
514
+
515
+ # Add these new functions to the Streamlit UI
516
+ if task_type == "Code Generation":
517
+ st.sidebar.header("Advanced Code Analysis")
518
+ if st.sidebar.button("Security Analysis"):
519
+ security_analysis = perform_security_analysis(optimized_code)
520
+ st.sidebar.subheader("Security Analysis")
521
+ st.sidebar.write(security_analysis)
522
+
523
+ if st.sidebar.button("Generate API Documentation"):
524
+ api_docs = generate_api_documentation(optimized_code)
525
+ st.sidebar.subheader("API Documentation")
526
+ st.sidebar.write(api_docs)
527
+
528
+ if st.sidebar.button("Suggest Design Patterns"):
529
+ design_patterns = suggest_design_patterns(optimized_code)
530
+ st.sidebar.subheader("Suggested Design Patterns")
531
+ st.sidebar.write(design_patterns)
532
+
533
+ # Add a feature to generate a complete project structure
534
+ def generate_project_structure(project_description):
535
+ """Generate a complete project structure based on the given description."""
536
+ project_structure = generate_response(f"Generate a complete project structure for the following project description:\n\n{project_description}")
537
+ return project_structure
538
+
539
+ # Add this new function to the Streamlit UI
540
+ if st.sidebar.button("Generate Project Structure"):
541
+ project_description = st.sidebar.text_area("Enter project description:")
542
+ if project_description:
543
+ project_structure = generate_project_structure(project_description)
544
+ st.sidebar.subheader("Generated Project Structure")
545
+ st.sidebar.code(project_structure)
546
+
547
+ # Add a feature to suggest relevant libraries and frameworks
548
+ def suggest_libraries(code):
549
+ """Suggest relevant libraries and frameworks for the given code."""
550
+ suggestions = generate_response(f"Suggest relevant libraries and frameworks for the following code:\n\n{code}")
551
+ return suggestions
552
+
553
+ # Add this new function to the Streamlit UI
554
+ if task_type == "Code Generation":
555
+ if st.sidebar.button("Suggest Libraries"):
556
+ library_suggestions = suggest_libraries(optimized_code)
557
+ st.sidebar.subheader("Suggested Libraries and Frameworks")
558
+ st.sidebar.write(library_suggestions)
559
+
560
+ # Add a feature to generate code in multiple programming languages
561
+ def translate_code(code, target_language):
562
+ """Translate the given code to the specified target language."""
563
+ translated_code = generate_response(f"Translate the following code to {target_language}:\n\n{code}")
564
+ return translated_code
565
+
566
+ # Add this new function to the Streamlit UI
567
+ if task_type == "Code Generation":
568
+ target_language = st.sidebar.selectbox("Select target language for translation", ["Python", "JavaScript", "Java", "C++", "Go"])
569
+ if st.sidebar.button("Translate Code"):
570
+ translated_code = translate_code(optimized_code, target_language)
571
+ st.sidebar.subheader(f"Translated Code ({target_language})")
572
+ st.sidebar.code(translated_code)
573
+
574
+ # Add a feature to generate a README file for the project
575
+ def generate_readme(project_description, code):
576
+ """Generate a README file for the project based on the description and code."""
577
+ readme_content = generate_response(f"Generate a README.md file for the following project:\n\nDescription: {project_description}\n\nCode:\n{code}")
578
+ return readme_content
579
+
580
+ # Add this new function to the Streamlit UI
581
+ if task_type == "Code Generation":
582
+ if st.sidebar.button("Generate README"):
583
+ project_description = st.sidebar.text_area("Enter project description:")
584
+ if project_description:
585
+ readme_content = generate_readme(project_description, optimized_code)
586
+ st.sidebar.subheader("Generated README.md")
587
+ st.sidebar.markdown(readme_content)
588
+
589
+ # Add a feature to suggest code refactoring
590
+ def suggest_refactoring(code):
591
+ """Suggest code refactoring improvements for the given code."""
592
+ refactoring_suggestions = generate_response(f"Suggest code refactoring improvements for the following code:\n\n{code}")
593
+ return refactoring_suggestions
594
+
595
+ # Add this new function to the Streamlit UI
596
+ if task_type == "Code Generation":
597
+ if st.sidebar.button("Suggest Refactoring"):
598
+ refactoring_suggestions = suggest_refactoring(optimized_code)
599
+ st.sidebar.subheader("Refactoring Suggestions")
600
+ st.sidebar.write(refactoring_suggestions)
601
+
602
+ # Add a feature to generate sample test data
603
+ def generate_test_data(code):
604
+ """Generate sample test data for the given code."""
605
+ test_data = generate_response(f"Generate sample test data for the following code:\n\n{code}")
606
+ return test_data
607
+
608
+ # Add this new function to the Streamlit UI
609
+ if task_type == "Code Generation":
610
+ if st.sidebar.button("Generate Test Data"):
611
+ test_data = generate_test_data(optimized_code)
612
+ st.sidebar.subheader("Generated Test Data")
613
+ st.sidebar.code(test_data)
614
+
615
+ # Main execution
616
+ if __name__ == "__main__":
617
+ st.sidebar.header("About")
618
+ st.sidebar.info("This Ultra AI Code Assistant is powered by advanced AI models and incorporates expertise across multiple domains including software development, machine learning, data analysis, and more.")
619
+
620
+ st.sidebar.header("Feedback")
621
+ feedback = st.sidebar.text_area("Please provide any feedback or suggestions:")
622
+ if st.sidebar.button("Submit Feedback"):
623
+ # Here you would typically send this feedback to a database or email
624
+ st.sidebar.success("Thank you for your feedback!")