Artificial-superintelligence commited on
Commit
a66a809
Β·
verified Β·
1 Parent(s): 90eba29

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -0
app.py CHANGED
@@ -20,6 +20,14 @@ import matplotlib.pyplot as plt
20
  import seaborn as sns
21
  from IPython.display import display
22
  from tenacity import retry, stop_after_attempt, wait_fixed
 
 
 
 
 
 
 
 
23
 
24
  # Configure the Gemini API
25
  genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
@@ -49,6 +57,7 @@ def generate_response(user_input):
49
  response = chat_session.send_message(user_input)
50
  return response.text
51
  except Exception as e:
 
52
  return f"Error: {e}"
53
 
54
  def optimize_code(code):
@@ -81,6 +90,7 @@ def train_ml_model(code_data):
81
 
82
  def handle_error(error):
83
  """Handle errors and log them."""
 
84
  st.error(f"An error occurred: {error}")
85
 
86
  def initialize_git_repo(repo_path):
@@ -142,6 +152,7 @@ def execute_code_in_docker(code):
142
  logs = container.logs().decode('utf-8')
143
  return logs, result['StatusCode']
144
  except Exception as e:
 
145
  return f"Error: {e}", 1
146
 
147
  def solve_equation(equation):
@@ -175,6 +186,38 @@ def display_dataframe(data):
175
  df = pd.DataFrame(data)
176
  display(df)
177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
  # Streamlit UI setup
179
  st.set_page_config(page_title="Ultra AI Code Assistant", page_icon="πŸš€", layout="wide")
180
 
 
20
  import seaborn as sns
21
  from IPython.display import display
22
  from tenacity import retry, stop_after_attempt, wait_fixed
23
+ from transformers import pipeline
24
+ import tensorflow as tf
25
+ import torch
26
+ import json
27
+ import logging
28
+
29
+ # Configure logging
30
+ logging.basicConfig(level=logging.INFO)
31
 
32
  # Configure the Gemini API
33
  genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
 
57
  response = chat_session.send_message(user_input)
58
  return response.text
59
  except Exception as e:
60
+ logging.error(f"Error generating response: {e}")
61
  return f"Error: {e}"
62
 
63
  def optimize_code(code):
 
90
 
91
  def handle_error(error):
92
  """Handle errors and log them."""
93
+ logging.error(f"An error occurred: {error}")
94
  st.error(f"An error occurred: {error}")
95
 
96
  def initialize_git_repo(repo_path):
 
152
  logs = container.logs().decode('utf-8')
153
  return logs, result['StatusCode']
154
  except Exception as e:
155
+ logging.error(f"Error executing code in Docker: {e}")
156
  return f"Error: {e}", 1
157
 
158
  def solve_equation(equation):
 
186
  df = pd.DataFrame(data)
187
  display(df)
188
 
189
+ def generate_text(prompt):
190
+ """Generate text using a pre-trained transformer model."""
191
+ generator = pipeline('text-generation', model='gpt2')
192
+ result = generator(prompt, max_length=50, num_return_sequences=1)
193
+ return result[0]['generated_text']
194
+
195
+ def classify_text(text):
196
+ """Classify text using a pre-trained transformer model."""
197
+ classifier = pipeline('sentiment-analysis')
198
+ result = classifier(text)
199
+ return result
200
+
201
+ def predict_with_tensorflow(model_path, data):
202
+ """Make predictions using a TensorFlow model."""
203
+ model = tf.keras.models.load_model(model_path)
204
+ predictions = model.predict(data)
205
+ return predictions
206
+
207
+ def predict_with_pytorch(model_path, data):
208
+ """Make predictions using a PyTorch model."""
209
+ model = torch.load(model_path)
210
+ model.eval()
211
+ with torch.no_grad():
212
+ predictions = model(data)
213
+ return predictions
214
+
215
+ def load_json_config(config_path):
216
+ """Load a JSON configuration file."""
217
+ with open(config_path, 'r') as file:
218
+ config = json.load(file)
219
+ return config
220
+
221
  # Streamlit UI setup
222
  st.set_page_config(page_title="Ultra AI Code Assistant", page_icon="πŸš€", layout="wide")
223