File size: 7,257 Bytes
2625edb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import torch
import numpy as np
import huggingface_hub
import zipfile
import os
from collections import OrderedDict
def model_info(model_path):
model = torch.load(model_path, map_location=torch.device('cpu'))
info = {
'config': model['config'],
'info': model['info'],
'epochs': model['info'].split('epoch')[0],
'sr': model['sr'],
'f0': model['f0'],
'size': model['size'] if 'size' in model['weight'] else 'fp32',
}
return info
def merge(path1, path2, alpha1, sr, f0, info, name, version):
try:
def extract(ckpt):
a = ckpt["model"]
opt = OrderedDict()
opt["weight"] = {}
for key in a.keys():
if "enc_q" in key:
continue
opt["weight"][key] = a[key]
return opt
ckpt1 = torch.load(path1, map_location="cpu")
ckpt2 = torch.load(path2, map_location="cpu")
cfg = ckpt1["config"]
if "model" in ckpt1:
ckpt1 = extract(ckpt1)
else:
ckpt1 = ckpt1["weight"]
if "model" in ckpt2:
ckpt2 = extract(ckpt2)
else:
ckpt2 = ckpt2["weight"]
if sorted(list(ckpt1.keys())) != sorted(list(ckpt2.keys())):
return "Fail to merge the models. The model architectures are not the same."
opt = OrderedDict()
opt["weight"] = {}
for key in ckpt1.keys():
# try:
if key == "emb_g.weight" and ckpt1[key].shape != ckpt2[key].shape:
min_shape0 = min(ckpt1[key].shape[0], ckpt2[key].shape[0])
opt["weight"][key] = (
alpha1 * (ckpt1[key][:min_shape0].float())
+ (1 - alpha1) * (ckpt2[key][:min_shape0].float())
).half()
else:
opt["weight"][key] = (
alpha1 * (ckpt1[key].float()) + (1 - alpha1) * (ckpt2[key].float())
).half()
# except:
# pdb.set_trace()
opt["config"] = cfg
"""
if(sr=="40k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 10, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 40000]
elif(sr=="48k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10,6,2,2,2], 512, [16, 16, 4, 4], 109, 256, 48000]
elif(sr=="32k"):opt["config"] = [513, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 4, 2, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 32000]
"""
opt["sr"] = sr
opt["f0"] = 1 if f0 == "Yes" else 0
opt["version"] = version
opt["info"] = info
torch.save(opt, "models/" + name + ".pth")
return "models/" + name + ".pth"
except:
return "Fail to merge the models. The model architectures are not the same." # <- L if u see this u suck
def model_quant(model_path, size):
"""
Quantize the model to a lower precision. - this is the floating point version
Args:
model_path: str, path to the model file
size: str, one of ["fp2", "fp4", "fp8", "fp16"]
Returns:
str, message indicating the success of the operation
"""
size_options = ["fp2", "fp4", "fp8", "fp16"]
if size not in size_options:
raise ValueError(f"Size must be one of {size_options}")
model_base = torch.load(model_path, map_location=torch.device('cpu'))
model = model_base['weight']
#model = json.loads(json.dumps(model))
if size == "fp16":
for key in model.keys():
model[key] = model[key].half() # 16-bit floating point
elif size == "fp8":
for key in model.keys():
model[key] = model[key].half().half() # 8-bit floating point <- this is the most common one
elif size == "fp4":
for key in model.keys():
model[key] = model[key].half().half().half() # 4-bit floating point <- ok maybe you're mentally ill if you choose this (very low precision)
elif size == "fp2":
for key in model.keys():
model[key] = model[key].half().half().half().half() # 2-bit floating point <- if you choose this you're a fucking dickhead coming
print(model_path)
output_path = model_path.split('.pth')[0] + f'_{size}.pth'
output_style = {
'weight': model,
'config': model_base['config'],
'info': model_base['info'],
'sr': model_base['sr'],
'f0': model_base['f0'],
'credits': f"Quantized to {size} precision, using Ilaria RVC, (Mikus's script)",
"size": size
}
torch.save(output_style, output_path)
#AmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithraxAmerithrax
# our data isnt safe anymore currently typing this and there is a 100% chance that it'll be stolen and used for training another fucking dogshit language model by a horrible company like openai
# i say this as a person who communicates with microsoft and i will stop mentioning this as they're so closely tied together nowadays
# as fred durst has said - "That's your best friend and your worst enemy - your own brain." - keep your shit local and never trust scumbag companies even if they make the models oss - they're stealing data
# this is probably the only rant i'll have in this entire space and i put it in a notable spot
return "Model quantized successfully" # <- enjoy this fucking hot shit that looks like a steaming turd paired with skibidi toilet and the unibomber
def upload_model(repo, pth, index, token):
"""
Upload a model to the Hugging Face Hub
Args:
repo: str, the name of the repository
pth: str, path to the model file
index: str, the index of the model in the repository
token: str, the API token
Returns:
str, message indicating the success of the operation
"""
readme = f"""
# {repo}
This is a model uploaded by Ilaria RVC, using Mikus's script.
"""
repo_name = repo.split('/')[1]
with zipfile.ZipFile(f'{repo_name}.zip', 'w') as zipf:
zipf.write(pth, os.path.basename(pth))
zipf.write(index, os.path.basename(index))
zipf.writestr('README.md', readme)
huggingface_hub.HfApi().create_repo(token=token, name=repo, exist_ok=True)
huggingface_hub.HfApi().upload_file(token=token, path=f'{repo.split("/")[1]}.zip', repo_id=repo)
os.remove(f'{repo.split("/")[1]}.zip')
return "Model uploaded successfully" |