|
import gradio as gr |
|
import requests |
|
import random |
|
import os |
|
import zipfile |
|
import librosa |
|
import time |
|
from infer_rvc_python import BaseLoader |
|
from pydub import AudioSegment |
|
from tts_voice import tts_order_voice |
|
import edge_tts |
|
import tempfile |
|
from audio_separator.separator import Separator |
|
import model_handler |
|
import psutil |
|
import cpuinfo |
|
|
|
language_dict = tts_order_voice |
|
|
|
async def text_to_speech_edge(text, language_code): |
|
voice = language_dict[language_code] |
|
communicate = edge_tts.Communicate(text, voice) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: |
|
tmp_path = tmp_file.name |
|
|
|
await communicate.save(tmp_path) |
|
|
|
return tmp_path |
|
|
|
try: |
|
import spaces |
|
spaces_status = True |
|
except ImportError: |
|
spaces_status = False |
|
|
|
separator = Separator() |
|
converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None) |
|
|
|
global pth_file |
|
global index_file |
|
|
|
pth_file = "model.pth" |
|
index_file = "model.index" |
|
|
|
|
|
TEMP_DIR = "temp" |
|
MODEL_PREFIX = "model" |
|
PITCH_ALGO_OPT = [ |
|
"pm", |
|
"harvest", |
|
"crepe", |
|
"rmvpe", |
|
"rmvpe+", |
|
] |
|
UVR_5_MODELS = [ |
|
{"model_name": "BS-Roformer-Viperx-1297", "checkpoint": "model_bs_roformer_ep_317_sdr_12.9755.ckpt"}, |
|
{"model_name": "MDX23C-InstVoc HQ 2", "checkpoint": "MDX23C-8KFFT-InstVoc_HQ_2.ckpt"}, |
|
{"model_name": "Kim Vocal 2", "checkpoint": "Kim_Vocal_2.onnx"}, |
|
{"model_name": "5_HP-Karaoke", "checkpoint": "5_HP-Karaoke-UVR.pth"}, |
|
{"model_name": "UVR-DeNoise by FoxJoy", "checkpoint": "UVR-DeNoise.pth"}, |
|
{"model_name": "UVR-DeEcho-DeReverb by FoxJoy", "checkpoint": "UVR-DeEcho-DeReverb.pth"}, |
|
] |
|
MODELS = [ |
|
{"model": "model.pth", "index": "model.index", "model_name": "Test Model"}, |
|
] |
|
|
|
os.makedirs(TEMP_DIR, exist_ok=True) |
|
|
|
def unzip_file(file): |
|
filename = os.path.basename(file).split(".")[0] |
|
with zipfile.ZipFile(file, 'r') as zip_ref: |
|
zip_ref.extractall(os.path.join(TEMP_DIR, filename)) |
|
return True |
|
|
|
|
|
def progress_bar(total, current): |
|
return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%" |
|
|
|
def download_from_url(url, name=None): |
|
if name is None: |
|
raise ValueError("The model name must be provided") |
|
if "/blob/" in url: |
|
url = url.replace("/blob/", "/resolve/") |
|
if "huggingface" not in url: |
|
return ["The URL must be from huggingface", "Failed", "Failed"] |
|
filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip") |
|
response = requests.get(url) |
|
total = int(response.headers.get('content-length', 0)) |
|
if total > 500000000: |
|
|
|
return ["The file is too large. You can only download files up to 500 MB in size.", "Failed", "Failed"] |
|
current = 0 |
|
with open(filename, "wb") as f: |
|
for data in response.iter_content(chunk_size=4096): |
|
f.write(data) |
|
current += len(data) |
|
print(progress_bar(total, current), end="\r") |
|
|
|
|
|
|
|
try: |
|
unzip_file(filename) |
|
except Exception as e: |
|
return ["Failed to unzip the file", "Failed", "Failed"] |
|
unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0]) |
|
pth_files = [] |
|
index_files = [] |
|
for root, dirs, files in os.walk(unzipped_dir): |
|
for file in files: |
|
if file.endswith(".pth"): |
|
pth_files.append(os.path.join(root, file)) |
|
elif file.endswith(".index"): |
|
index_files.append(os.path.join(root, file)) |
|
|
|
print(pth_files, index_files) |
|
global pth_file |
|
global index_file |
|
pth_file = pth_files[0] |
|
index_file = index_files[0] |
|
|
|
print(pth_file) |
|
print(index_file) |
|
|
|
if name == "": |
|
name = pth_file.split(".")[0] |
|
|
|
MODELS.append({"model": pth_file, "index": index_file, "model_name": name}) |
|
return ["Downloaded as " + name, pth_files[0], index_files[0]] |
|
|
|
def inference(audio, model_name): |
|
output_data = inf_handler(audio, model_name) |
|
vocals = output_data[0] |
|
inst = output_data[1] |
|
|
|
return vocals, inst |
|
|
|
if spaces_status: |
|
@spaces.GPU() |
|
def convert_now(audio_files, random_tag, converter): |
|
return converter( |
|
audio_files, |
|
random_tag, |
|
overwrite=False, |
|
parallel_workers=8 |
|
) |
|
|
|
|
|
else: |
|
def convert_now(audio_files, random_tag, converter): |
|
return converter( |
|
audio_files, |
|
random_tag, |
|
overwrite=False, |
|
parallel_workers=8 |
|
) |
|
|
|
def calculate_remaining_time(epochs, seconds_per_epoch): |
|
total_seconds = epochs * seconds_per_epoch |
|
|
|
hours = total_seconds // 3600 |
|
minutes = (total_seconds % 3600) // 60 |
|
seconds = total_seconds % 60 |
|
|
|
if hours == 0: |
|
return f"{int(minutes)} minutes" |
|
elif hours == 1: |
|
return f"{int(hours)} hour and {int(minutes)} minutes" |
|
else: |
|
return f"{int(hours)} hours and {int(minutes)} minutes" |
|
|
|
def inf_handler(audio, model_name): |
|
model_found = False |
|
for model_info in UVR_5_MODELS: |
|
if model_info["model_name"] == model_name: |
|
separator.load_model(model_info["checkpoint"]) |
|
model_found = True |
|
break |
|
if not model_found: |
|
separator.load_model() |
|
output_files = separator.separate(audio) |
|
vocals = output_files[0] |
|
inst = output_files[1] |
|
return vocals, inst |
|
|
|
|
|
def run( |
|
model, |
|
audio_files, |
|
pitch_alg, |
|
pitch_lvl, |
|
index_inf, |
|
r_m_f, |
|
e_r, |
|
c_b_p, |
|
): |
|
if not audio_files: |
|
raise ValueError("The audio pls") |
|
|
|
if isinstance(audio_files, str): |
|
audio_files = [audio_files] |
|
|
|
try: |
|
duration_base = librosa.get_duration(filename=audio_files[0]) |
|
print("Duration:", duration_base) |
|
except Exception as e: |
|
print(e) |
|
|
|
random_tag = "USER_"+str(random.randint(10000000, 99999999)) |
|
|
|
file_m = model |
|
print("File model:", file_m) |
|
|
|
|
|
for model in MODELS: |
|
if model["model_name"] == file_m: |
|
print(model) |
|
file_m = model["model"] |
|
file_index = model["index"] |
|
break |
|
|
|
if not file_m.endswith(".pth"): |
|
raise ValueError("The model file must be a .pth file") |
|
|
|
|
|
print("Random tag:", random_tag) |
|
print("File model:", file_m) |
|
print("Pitch algorithm:", pitch_alg) |
|
print("Pitch level:", pitch_lvl) |
|
print("File index:", file_index) |
|
print("Index influence:", index_inf) |
|
print("Respiration median filtering:", r_m_f) |
|
print("Envelope ratio:", e_r) |
|
|
|
converter.apply_conf( |
|
tag=random_tag, |
|
file_model=file_m, |
|
pitch_algo=pitch_alg, |
|
pitch_lvl=pitch_lvl, |
|
file_index=file_index, |
|
index_influence=index_inf, |
|
respiration_median_filtering=r_m_f, |
|
envelope_ratio=e_r, |
|
consonant_breath_protection=c_b_p, |
|
resample_sr=44100 if audio_files[0].endswith('.mp3') else 0, |
|
) |
|
time.sleep(0.1) |
|
|
|
result = convert_now(audio_files, random_tag, converter) |
|
print("Result:", result) |
|
|
|
return result[0] |
|
|
|
def upload_model(index_file, pth_file, model_name): |
|
pth_file = pth_file.name |
|
index_file = index_file.name |
|
MODELS.append({"model": pth_file, "index": index_file, "model_name": model_name}) |
|
return "Uploaded!" |
|
|
|
with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose"), title="Ilaria RVC 💖") as demo: |
|
gr.Markdown("## Ilaria RVC 💖") |
|
with gr.Tab("Inference"): |
|
sound_gui = gr.Audio(value=None,type="filepath",autoplay=False,visible=True,) |
|
def update(): |
|
print(MODELS) |
|
return gr.Dropdown(label="Model",choices=[model["model_name"] for model in MODELS],visible=True,interactive=True, value=MODELS[0]["model_name"],) |
|
with gr.Row(): |
|
models_dropdown = gr.Dropdown(label="Model",choices=[model["model_name"] for model in MODELS],visible=True,interactive=True, value=MODELS[0]["model_name"],) |
|
refresh_button = gr.Button("Refresh Models") |
|
refresh_button.click(update, outputs=[models_dropdown]) |
|
|
|
with gr.Accordion("Ilaria TTS", open=False): |
|
text_tts = gr.Textbox(label="Text", placeholder="Hello!", lines=3, interactive=True,) |
|
dropdown_tts = gr.Dropdown(label="Language and Model",choices=list(language_dict.keys()),interactive=True, value=list(language_dict.keys())[0]) |
|
|
|
button_tts = gr.Button("Speak", variant="primary",) |
|
button_tts.click(text_to_speech_edge, inputs=[text_tts, dropdown_tts], outputs=[sound_gui]) |
|
|
|
with gr.Accordion("Settings", open=False): |
|
pitch_algo_conf = gr.Dropdown(PITCH_ALGO_OPT,value=PITCH_ALGO_OPT[4],label="Pitch algorithm",visible=True,interactive=True,) |
|
pitch_lvl_conf = gr.Slider(label="Pitch level (lower -> 'male' while higher -> 'female')",minimum=-24,maximum=24,step=1,value=0,visible=True,interactive=True,) |
|
index_inf_conf = gr.Slider(minimum=0,maximum=1,label="Index influence -> How much accent is applied",value=0.75,) |
|
respiration_filter_conf = gr.Slider(minimum=0,maximum=7,label="Respiration median filtering",value=3,step=1,interactive=True,) |
|
envelope_ratio_conf = gr.Slider(minimum=0,maximum=1,label="Envelope ratio",value=0.25,interactive=True,) |
|
consonant_protec_conf = gr.Slider(minimum=0,maximum=0.5,label="Consonant breath protection",value=0.5,interactive=True,) |
|
|
|
button_conf = gr.Button("Convert",variant="primary",) |
|
output_conf = gr.Audio(type="filepath",label="Output",) |
|
|
|
button_conf.click(lambda :None, None, output_conf) |
|
button_conf.click( |
|
run, |
|
inputs=[ |
|
models_dropdown, |
|
sound_gui, |
|
pitch_algo_conf, |
|
pitch_lvl_conf, |
|
index_inf_conf, |
|
respiration_filter_conf, |
|
envelope_ratio_conf, |
|
consonant_protec_conf, |
|
], |
|
outputs=[output_conf], |
|
) |
|
|
|
|
|
with gr.Tab("Model Loader (Download and Upload)"): |
|
with gr.Accordion("Model Downloader", open=False): |
|
gr.Markdown( |
|
"Download the model from the following URL and upload it here. (Huggingface RVC model)" |
|
) |
|
model = gr.Textbox(lines=1, label="Model URL") |
|
name = gr.Textbox(lines=1, label="Model Name", placeholder="Model Name") |
|
download_button = gr.Button("Download Model") |
|
status = gr.Textbox(lines=1, label="Status", placeholder="Waiting....", interactive=False) |
|
model_pth = gr.Textbox(lines=1, label="Model pth file", placeholder="Waiting....", interactive=False) |
|
index_pth = gr.Textbox(lines=1, label="Index pth file", placeholder="Waiting....", interactive=False) |
|
download_button.click(download_from_url, [model, name], outputs=[status, model_pth, index_pth]) |
|
with gr.Accordion("Upload A Model", open=False): |
|
index_file_upload = gr.File(label="Index File (.index)") |
|
pth_file_upload = gr.File(label="Model File (.pth)") |
|
|
|
model_name = gr.Textbox(label="Model Name", placeholder="Model Name") |
|
upload_button = gr.Button("Upload Model") |
|
upload_status = gr.Textbox(lines=1, label="Status", placeholder="Waiting....", interactive=False) |
|
|
|
upload_button.click(upload_model, [index_file_upload, pth_file_upload, model_name], upload_status) |
|
|
|
|
|
with gr.Tab("Vocal Separator (UVR)"): |
|
gr.Markdown("Separate vocals and instruments from an audio file using UVR models. - This is only on CPU due to ZeroGPU being ZeroGPU :(") |
|
uvr5_audio_file = gr.Audio(label="Audio File",type="filepath") |
|
|
|
with gr.Row(): |
|
uvr5_model = gr.Dropdown(label="Model", choices=[model["model_name"] for model in UVR_5_MODELS]) |
|
uvr5_button = gr.Button("Separate Vocals", variant="primary",) |
|
|
|
uvr5_output_voc = gr.Audio(type="filepath", label="Output 1",) |
|
uvr5_output_inst = gr.Audio(type="filepath", label="Output 2",) |
|
|
|
uvr5_button.click(inference, [uvr5_audio_file, uvr5_model], [uvr5_output_voc, uvr5_output_inst]) |
|
|
|
with gr.Tab("Extra"): |
|
with gr.Accordion("Model Information", open=False): |
|
def json_to_markdown_table(json_data): |
|
table = "| Key | Value |\n| --- | --- |\n" |
|
for key, value in json_data.items(): |
|
table += f"| {key} | {value} |\n" |
|
return table |
|
def model_info(name): |
|
for model in MODELS: |
|
if model["model_name"] == name: |
|
print(model["model"]) |
|
info = model_handler.model_info(model["model"]) |
|
info2 = { |
|
"Model Name": model["model_name"], |
|
"Model Config": info['config'], |
|
"Epochs Trained": info['epochs'], |
|
"Sample Rate": info['sr'], |
|
"Pitch Guidance": info['f0'], |
|
"Model Precision": info['size'], |
|
} |
|
return gr.Markdown(json_to_markdown_table(info2)) |
|
|
|
return "Model not found" |
|
def update(): |
|
print(MODELS) |
|
return gr.Dropdown(label="Model", choices=[model["model_name"] for model in MODELS]) |
|
with gr.Row(): |
|
model_info_dropdown = gr.Dropdown(label="Model", choices=[model["model_name"] for model in MODELS]) |
|
refresh_button = gr.Button("Refresh Models") |
|
refresh_button.click(update, outputs=[model_info_dropdown]) |
|
model_info_button = gr.Button("Get Model Information") |
|
model_info_output = gr.Textbox(value="Waiting...",label="Output", interactive=False) |
|
model_info_button.click(model_info, [model_info_dropdown], [model_info_output]) |
|
|
|
|
|
|
|
with gr.Accordion("Training Time Calculator", open=False): |
|
with gr.Column(): |
|
epochs_input = gr.Number(label="Number of Epochs") |
|
seconds_input = gr.Number(label="Seconds per Epoch") |
|
calculate_button = gr.Button("Calculate Time Remaining") |
|
remaining_time_output = gr.Textbox(label="Remaining Time", interactive=False) |
|
|
|
calculate_button.click(calculate_remaining_time,inputs=[epochs_input, seconds_input],outputs=[remaining_time_output]) |
|
|
|
with gr.Accordion("Model Fusion", open=False): |
|
with gr.Group(): |
|
def merge(ckpt_a, ckpt_b, alpha_a, sr_, if_f0_, info__, name_to_save0, version_2): |
|
for model in MODELS: |
|
if model["model_name"] == ckpt_a: |
|
ckpt_a = model["model"] |
|
if model["model_name"] == ckpt_b: |
|
ckpt_b = model["model"] |
|
|
|
path = model_handler.merge(ckpt_a, ckpt_b, alpha_a, sr_, if_f0_, info__, name_to_save0, version_2) |
|
if path == "Fail to merge the models. The model architectures are not the same.": |
|
return "Fail to merge the models. The model architectures are not the same." |
|
else: |
|
MODELS.append({"model": path, "index": None, "model_name": name_to_save0}) |
|
return "Merged, saved as " + name_to_save0 |
|
|
|
gr.Markdown(value="Strongly suggested to use only very clean models.") |
|
with gr.Row(): |
|
def update(): |
|
print(MODELS) |
|
return gr.Dropdown(label="Model A", choices=[model["model_name"] for model in MODELS]), gr.Dropdown(label="Model B", choices=[model["model_name"] for model in MODELS]) |
|
refresh_button_fusion = gr.Button("Refresh Models") |
|
ckpt_a = gr.Dropdown(label="Model A", choices=[model["model_name"] for model in MODELS]) |
|
ckpt_b = gr.Dropdown(label="Model B", choices=[model["model_name"] for model in MODELS]) |
|
refresh_button_fusion.click(update, outputs=[ckpt_a, ckpt_b]) |
|
alpha_a = gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
label="Weight of the first model over the second", |
|
value=0.5, |
|
interactive=True, |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
sr_ = gr.Radio( |
|
label="Sample rate of both models", |
|
choices=["32k","40k", "48k"], |
|
value="32k", |
|
interactive=True, |
|
) |
|
if_f0_ = gr.Radio( |
|
label="Pitch Guidance", |
|
choices=["Yes", "Nah"], |
|
value="Yes", |
|
interactive=True, |
|
) |
|
info__ = gr.Textbox( |
|
label="Add informations to the model", |
|
value="", |
|
max_lines=8, |
|
interactive=True, |
|
visible=False |
|
) |
|
name_to_save0 = gr.Textbox( |
|
label="Final Model name", |
|
value="", |
|
max_lines=1, |
|
interactive=True, |
|
) |
|
version_2 = gr.Radio( |
|
label="Versions of the models", |
|
choices=["v1", "v2"], |
|
value="v2", |
|
interactive=True, |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
but6 = gr.Button("Fuse the two models", variant="primary") |
|
info4 = gr.Textbox(label="Output", value="", max_lines=8) |
|
but6.click( |
|
merge, |
|
[ckpt_a,ckpt_b,alpha_a,sr_,if_f0_,info__,name_to_save0,version_2,],info4,api_name="ckpt_merge",) |
|
|
|
with gr.Accordion("Model Quantization", open=False): |
|
gr.Markdown("Quantize the model to a lower precision. - soon™ or never™ 😎") |
|
|
|
with gr.Accordion("Debug", open=False): |
|
def json_to_markdown_table(json_data): |
|
table = "| Key | Value |\n| --- | --- |\n" |
|
for key, value in json_data.items(): |
|
table += f"| {key} | {value} |\n" |
|
return table |
|
gr.Markdown("View the models that are currently loaded in the instance.") |
|
|
|
gr.Markdown(json_to_markdown_table({"Models": len(MODELS), "UVR Models": len(UVR_5_MODELS)})) |
|
|
|
gr.Markdown("View the current status of the instance.") |
|
status = { |
|
"Status": "Running", |
|
"Models": len(MODELS), |
|
"UVR Models": len(UVR_5_MODELS), |
|
"CPU Usage": f"{psutil.cpu_percent()}%", |
|
"RAM Usage": f"{psutil.virtual_memory().percent}%", |
|
"CPU": f"{cpuinfo.get_cpu_info()['brand_raw']}", |
|
"System Uptime": f"{round(time.time() - psutil.boot_time(), 2)} seconds", |
|
"System Load Average": f"{psutil.getloadavg()}", |
|
"====================": "====================", |
|
"CPU Cores": psutil.cpu_count(), |
|
"CPU Threads": psutil.cpu_count(logical=True), |
|
"RAM Total": f"{round(psutil.virtual_memory().total / 1024**3, 2)} GB", |
|
"RAM Used": f"{round(psutil.virtual_memory().used / 1024**3, 2)} GB", |
|
"CPU Frequency": f"{psutil.cpu_freq().current} MHz", |
|
"====================": "====================", |
|
"GPU": "A100 - Do a request (Inference, you won't see it either way)", |
|
} |
|
gr.Markdown(json_to_markdown_table(status)) |
|
|
|
with gr.Tab("Credits"): |
|
gr.Markdown( |
|
""" |
|
Ilaria RVC made by [Ilaria](https://huggingface.co/TheStinger) suport her on [ko-fi](https://ko-fi.com/ilariaowo) |
|
|
|
The Inference code is made by [r3gm](https://huggingface.co/r3gm) (his module helped form this space 💖) |
|
|
|
made with ❤️ by [mikus](https://github.com/cappuch) - made the ui! |
|
|
|
## In loving memory of JLabDX 🕊️ |
|
""" |
|
) |
|
with gr.Tab(("")): |
|
gr.Markdown(''' |
|
![ilaria](https://i.ytimg.com/vi/5PWqt2Wg-us/maxresdefault.jpg) |
|
''') |
|
|
|
demo.queue(api_open=False).launch(show_api=False) |
|
|