|
from typing import Union
|
|
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn.utils.parametrizations import weight_norm
|
|
from torchaudio.transforms import Resample
|
|
import os
|
|
import librosa
|
|
import soundfile as sf
|
|
import torch.utils.data
|
|
from librosa.filters import mel as librosa_mel_fn
|
|
import math
|
|
from functools import partial
|
|
|
|
from einops import rearrange, repeat
|
|
from local_attention import LocalAttention
|
|
from torch import nn
|
|
|
|
os.environ["LRU_CACHE_CAPACITY"] = "3"
|
|
|
|
|
|
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
|
|
sampling_rate = None
|
|
try:
|
|
data, sampling_rate = sf.read(full_path, always_2d=True)
|
|
except Exception as error:
|
|
print(f"'{full_path}' failed to load with {error}")
|
|
if return_empty_on_exception:
|
|
return [], sampling_rate or target_sr or 48000
|
|
else:
|
|
raise Exception(error)
|
|
|
|
if len(data.shape) > 1:
|
|
data = data[:, 0]
|
|
assert (
|
|
len(data) > 2
|
|
)
|
|
|
|
if np.issubdtype(data.dtype, np.integer):
|
|
max_mag = -np.iinfo(
|
|
data.dtype
|
|
).min
|
|
else:
|
|
max_mag = max(np.amax(data), -np.amin(data))
|
|
max_mag = (
|
|
(2**31) + 1
|
|
if max_mag > (2**15)
|
|
else ((2**15) + 1 if max_mag > 1.01 else 1.0)
|
|
)
|
|
|
|
data = torch.FloatTensor(data.astype(np.float32)) / max_mag
|
|
|
|
if (
|
|
torch.isinf(data) | torch.isnan(data)
|
|
).any() and return_empty_on_exception:
|
|
return [], sampling_rate or target_sr or 48000
|
|
if target_sr is not None and sampling_rate != target_sr:
|
|
data = torch.from_numpy(
|
|
librosa.core.resample(
|
|
data.numpy(), orig_sr=sampling_rate, target_sr=target_sr
|
|
)
|
|
)
|
|
sampling_rate = target_sr
|
|
|
|
return data, sampling_rate
|
|
|
|
|
|
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
|
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
|
|
|
|
|
def dynamic_range_decompression(x, C=1):
|
|
return np.exp(x) / C
|
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
|
return torch.log(torch.clamp(x, min=clip_val) * C)
|
|
|
|
|
|
def dynamic_range_decompression_torch(x, C=1):
|
|
return torch.exp(x) / C
|
|
|
|
|
|
class STFT:
|
|
def __init__(
|
|
self,
|
|
sr=22050,
|
|
n_mels=80,
|
|
n_fft=1024,
|
|
win_size=1024,
|
|
hop_length=256,
|
|
fmin=20,
|
|
fmax=11025,
|
|
clip_val=1e-5,
|
|
):
|
|
self.target_sr = sr
|
|
|
|
self.n_mels = n_mels
|
|
self.n_fft = n_fft
|
|
self.win_size = win_size
|
|
self.hop_length = hop_length
|
|
self.fmin = fmin
|
|
self.fmax = fmax
|
|
self.clip_val = clip_val
|
|
self.mel_basis = {}
|
|
self.hann_window = {}
|
|
|
|
def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
|
|
sampling_rate = self.target_sr
|
|
n_mels = self.n_mels
|
|
n_fft = self.n_fft
|
|
win_size = self.win_size
|
|
hop_length = self.hop_length
|
|
fmin = self.fmin
|
|
fmax = self.fmax
|
|
clip_val = self.clip_val
|
|
|
|
factor = 2 ** (keyshift / 12)
|
|
n_fft_new = int(np.round(n_fft * factor))
|
|
win_size_new = int(np.round(win_size * factor))
|
|
hop_length_new = int(np.round(hop_length * speed))
|
|
if not train:
|
|
mel_basis = self.mel_basis
|
|
hann_window = self.hann_window
|
|
else:
|
|
mel_basis = {}
|
|
hann_window = {}
|
|
|
|
mel_basis_key = str(fmax) + "_" + str(y.device)
|
|
if mel_basis_key not in mel_basis:
|
|
mel = librosa_mel_fn(
|
|
sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax
|
|
)
|
|
mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
|
|
|
|
keyshift_key = str(keyshift) + "_" + str(y.device)
|
|
if keyshift_key not in hann_window:
|
|
hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
|
|
|
|
pad_left = (win_size_new - hop_length_new) // 2
|
|
pad_right = max(
|
|
(win_size_new - hop_length_new + 1) // 2,
|
|
win_size_new - y.size(-1) - pad_left,
|
|
)
|
|
if pad_right < y.size(-1):
|
|
mode = "reflect"
|
|
else:
|
|
mode = "constant"
|
|
y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode=mode)
|
|
y = y.squeeze(1)
|
|
|
|
spec = torch.stft(
|
|
y,
|
|
n_fft_new,
|
|
hop_length=hop_length_new,
|
|
win_length=win_size_new,
|
|
window=hann_window[keyshift_key],
|
|
center=center,
|
|
pad_mode="reflect",
|
|
normalized=False,
|
|
onesided=True,
|
|
return_complex=True,
|
|
)
|
|
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))
|
|
if keyshift != 0:
|
|
size = n_fft // 2 + 1
|
|
resize = spec.size(1)
|
|
if resize < size:
|
|
spec = F.pad(spec, (0, 0, 0, size - resize))
|
|
spec = spec[:, :size, :] * win_size / win_size_new
|
|
spec = torch.matmul(mel_basis[mel_basis_key], spec)
|
|
spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
|
|
return spec
|
|
|
|
def __call__(self, audiopath):
|
|
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
|
|
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
|
|
return spect
|
|
|
|
|
|
stft = STFT()
|
|
|
|
|
|
|
|
|
|
def softmax_kernel(
|
|
data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device=None
|
|
):
|
|
b, h, *_ = data.shape
|
|
|
|
|
|
|
|
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.0
|
|
|
|
|
|
|
|
ratio = projection_matrix.shape[0] ** -0.5
|
|
|
|
projection = repeat(projection_matrix, "j d -> b h j d", b=b, h=h)
|
|
projection = projection.type_as(data)
|
|
|
|
|
|
data_dash = torch.einsum("...id,...jd->...ij", (data_normalizer * data), projection)
|
|
|
|
|
|
diag_data = data**2
|
|
diag_data = torch.sum(diag_data, dim=-1)
|
|
diag_data = (diag_data / 2.0) * (data_normalizer**2)
|
|
diag_data = diag_data.unsqueeze(dim=-1)
|
|
|
|
if is_query:
|
|
data_dash = ratio * (
|
|
torch.exp(
|
|
data_dash
|
|
- diag_data
|
|
- torch.max(data_dash, dim=-1, keepdim=True).values
|
|
)
|
|
+ eps
|
|
)
|
|
else:
|
|
data_dash = ratio * (
|
|
torch.exp(data_dash - diag_data + eps)
|
|
)
|
|
|
|
return data_dash.type_as(data)
|
|
|
|
|
|
def orthogonal_matrix_chunk(cols, qr_uniform_q=False, device=None):
|
|
unstructured_block = torch.randn((cols, cols), device=device)
|
|
q, r = torch.linalg.qr(unstructured_block.cpu(), mode="reduced")
|
|
q, r = map(lambda t: t.to(device), (q, r))
|
|
|
|
|
|
|
|
if qr_uniform_q:
|
|
d = torch.diag(r, 0)
|
|
q *= d.sign()
|
|
return q.t()
|
|
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
|
|
def empty(tensor):
|
|
return tensor.numel() == 0
|
|
|
|
|
|
def default(val, d):
|
|
return val if exists(val) else d
|
|
|
|
|
|
def cast_tuple(val):
|
|
return (val,) if not isinstance(val, tuple) else val
|
|
|
|
|
|
class PCmer(nn.Module):
|
|
"""The encoder that is used in the Transformer model."""
|
|
|
|
def __init__(
|
|
self,
|
|
num_layers,
|
|
num_heads,
|
|
dim_model,
|
|
dim_keys,
|
|
dim_values,
|
|
residual_dropout,
|
|
attention_dropout,
|
|
):
|
|
super().__init__()
|
|
self.num_layers = num_layers
|
|
self.num_heads = num_heads
|
|
self.dim_model = dim_model
|
|
self.dim_values = dim_values
|
|
self.dim_keys = dim_keys
|
|
self.residual_dropout = residual_dropout
|
|
self.attention_dropout = attention_dropout
|
|
|
|
self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
|
|
|
|
|
|
|
|
def forward(self, phone, mask=None):
|
|
|
|
|
|
for i, layer in enumerate(self._layers):
|
|
phone = layer(phone, mask)
|
|
|
|
return phone
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _EncoderLayer(nn.Module):
|
|
"""One layer of the encoder.
|
|
|
|
Attributes:
|
|
attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence.
|
|
feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism.
|
|
"""
|
|
|
|
def __init__(self, parent: PCmer):
|
|
"""Creates a new instance of ``_EncoderLayer``.
|
|
|
|
Args:
|
|
parent (Encoder): The encoder that the layers is created for.
|
|
"""
|
|
super().__init__()
|
|
|
|
self.conformer = ConformerConvModule(parent.dim_model)
|
|
self.norm = nn.LayerNorm(parent.dim_model)
|
|
self.dropout = nn.Dropout(parent.residual_dropout)
|
|
|
|
|
|
self.attn = SelfAttention(
|
|
dim=parent.dim_model, heads=parent.num_heads, causal=False
|
|
)
|
|
|
|
|
|
|
|
def forward(self, phone, mask=None):
|
|
|
|
|
|
phone = phone + (self.attn(self.norm(phone), mask=mask))
|
|
|
|
phone = phone + (self.conformer(phone))
|
|
|
|
return phone
|
|
|
|
|
|
def calc_same_padding(kernel_size):
|
|
pad = kernel_size // 2
|
|
return (pad, pad - (kernel_size + 1) % 2)
|
|
|
|
|
|
|
|
|
|
|
|
class Swish(nn.Module):
|
|
def forward(self, x):
|
|
return x * x.sigmoid()
|
|
|
|
|
|
class Transpose(nn.Module):
|
|
def __init__(self, dims):
|
|
super().__init__()
|
|
assert len(dims) == 2, "dims must be a tuple of two dimensions"
|
|
self.dims = dims
|
|
|
|
def forward(self, x):
|
|
return x.transpose(*self.dims)
|
|
|
|
|
|
class GLU(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.dim = dim
|
|
|
|
def forward(self, x):
|
|
out, gate = x.chunk(2, dim=self.dim)
|
|
return out * gate.sigmoid()
|
|
|
|
|
|
class DepthWiseConv1d(nn.Module):
|
|
def __init__(self, chan_in, chan_out, kernel_size, padding):
|
|
super().__init__()
|
|
self.padding = padding
|
|
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups=chan_in)
|
|
|
|
def forward(self, x):
|
|
x = F.pad(x, self.padding)
|
|
return self.conv(x)
|
|
|
|
|
|
class ConformerConvModule(nn.Module):
|
|
def __init__(
|
|
self, dim, causal=False, expansion_factor=2, kernel_size=31, dropout=0.0
|
|
):
|
|
super().__init__()
|
|
|
|
inner_dim = dim * expansion_factor
|
|
padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
|
|
|
|
self.net = nn.Sequential(
|
|
nn.LayerNorm(dim),
|
|
Transpose((1, 2)),
|
|
nn.Conv1d(dim, inner_dim * 2, 1),
|
|
GLU(dim=1),
|
|
DepthWiseConv1d(
|
|
inner_dim, inner_dim, kernel_size=kernel_size, padding=padding
|
|
),
|
|
|
|
Swish(),
|
|
nn.Conv1d(inner_dim, dim, 1),
|
|
Transpose((1, 2)),
|
|
nn.Dropout(dropout),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
def linear_attention(q, k, v):
|
|
if v is None:
|
|
out = torch.einsum("...ed,...nd->...ne", k, q)
|
|
return out
|
|
|
|
else:
|
|
k_cumsum = k.sum(dim=-2)
|
|
|
|
D_inv = 1.0 / (torch.einsum("...nd,...d->...n", q, k_cumsum.type_as(q)) + 1e-8)
|
|
|
|
context = torch.einsum("...nd,...ne->...de", k, v)
|
|
out = torch.einsum("...de,...nd,...n->...ne", context, q, D_inv)
|
|
return out
|
|
|
|
|
|
def gaussian_orthogonal_random_matrix(
|
|
nb_rows, nb_columns, scaling=0, qr_uniform_q=False, device=None
|
|
):
|
|
nb_full_blocks = int(nb_rows / nb_columns)
|
|
block_list = []
|
|
|
|
for _ in range(nb_full_blocks):
|
|
q = orthogonal_matrix_chunk(
|
|
nb_columns, qr_uniform_q=qr_uniform_q, device=device
|
|
)
|
|
block_list.append(q)
|
|
|
|
remaining_rows = nb_rows - nb_full_blocks * nb_columns
|
|
if remaining_rows > 0:
|
|
q = orthogonal_matrix_chunk(
|
|
nb_columns, qr_uniform_q=qr_uniform_q, device=device
|
|
)
|
|
|
|
block_list.append(q[:remaining_rows])
|
|
|
|
final_matrix = torch.cat(block_list)
|
|
|
|
if scaling == 0:
|
|
multiplier = torch.randn((nb_rows, nb_columns), device=device).norm(dim=1)
|
|
elif scaling == 1:
|
|
multiplier = math.sqrt((float(nb_columns))) * torch.ones(
|
|
(nb_rows,), device=device
|
|
)
|
|
else:
|
|
raise ValueError(f"Invalid scaling {scaling}")
|
|
|
|
return torch.diag(multiplier) @ final_matrix
|
|
|
|
|
|
class FastAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim_heads,
|
|
nb_features=None,
|
|
ortho_scaling=0,
|
|
causal=False,
|
|
generalized_attention=False,
|
|
kernel_fn=nn.ReLU(),
|
|
qr_uniform_q=False,
|
|
no_projection=False,
|
|
):
|
|
super().__init__()
|
|
nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
|
|
|
|
self.dim_heads = dim_heads
|
|
self.nb_features = nb_features
|
|
self.ortho_scaling = ortho_scaling
|
|
|
|
self.create_projection = partial(
|
|
gaussian_orthogonal_random_matrix,
|
|
nb_rows=self.nb_features,
|
|
nb_columns=dim_heads,
|
|
scaling=ortho_scaling,
|
|
qr_uniform_q=qr_uniform_q,
|
|
)
|
|
projection_matrix = self.create_projection()
|
|
self.register_buffer("projection_matrix", projection_matrix)
|
|
|
|
self.generalized_attention = generalized_attention
|
|
self.kernel_fn = kernel_fn
|
|
|
|
|
|
|
|
self.no_projection = no_projection
|
|
|
|
self.causal = causal
|
|
|
|
@torch.no_grad()
|
|
def redraw_projection_matrix(self):
|
|
projections = self.create_projection()
|
|
self.projection_matrix.copy_(projections)
|
|
del projections
|
|
|
|
def forward(self, q, k, v):
|
|
device = q.device
|
|
|
|
if self.no_projection:
|
|
q = q.softmax(dim=-1)
|
|
k = torch.exp(k) if self.causal else k.softmax(dim=-2)
|
|
else:
|
|
create_kernel = partial(
|
|
softmax_kernel, projection_matrix=self.projection_matrix, device=device
|
|
)
|
|
|
|
q = create_kernel(q, is_query=True)
|
|
k = create_kernel(k, is_query=False)
|
|
|
|
attn_fn = linear_attention if not self.causal else self.causal_linear_fn
|
|
if v is None:
|
|
out = attn_fn(q, k, None)
|
|
return out
|
|
else:
|
|
out = attn_fn(q, k, v)
|
|
return out
|
|
|
|
|
|
class SelfAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
causal=False,
|
|
heads=8,
|
|
dim_head=64,
|
|
local_heads=0,
|
|
local_window_size=256,
|
|
nb_features=None,
|
|
feature_redraw_interval=1000,
|
|
generalized_attention=False,
|
|
kernel_fn=nn.ReLU(),
|
|
qr_uniform_q=False,
|
|
dropout=0.0,
|
|
no_projection=False,
|
|
):
|
|
super().__init__()
|
|
assert dim % heads == 0, "dimension must be divisible by number of heads"
|
|
dim_head = default(dim_head, dim // heads)
|
|
inner_dim = dim_head * heads
|
|
self.fast_attention = FastAttention(
|
|
dim_head,
|
|
nb_features,
|
|
causal=causal,
|
|
generalized_attention=generalized_attention,
|
|
kernel_fn=kernel_fn,
|
|
qr_uniform_q=qr_uniform_q,
|
|
no_projection=no_projection,
|
|
)
|
|
|
|
self.heads = heads
|
|
self.global_heads = heads - local_heads
|
|
self.local_attn = (
|
|
LocalAttention(
|
|
window_size=local_window_size,
|
|
causal=causal,
|
|
autopad=True,
|
|
dropout=dropout,
|
|
look_forward=int(not causal),
|
|
rel_pos_emb_config=(dim_head, local_heads),
|
|
)
|
|
if local_heads > 0
|
|
else None
|
|
)
|
|
|
|
self.to_q = nn.Linear(dim, inner_dim)
|
|
self.to_k = nn.Linear(dim, inner_dim)
|
|
self.to_v = nn.Linear(dim, inner_dim)
|
|
self.to_out = nn.Linear(inner_dim, dim)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
@torch.no_grad()
|
|
def redraw_projection_matrix(self):
|
|
self.fast_attention.redraw_projection_matrix()
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
context=None,
|
|
mask=None,
|
|
context_mask=None,
|
|
name=None,
|
|
inference=False,
|
|
**kwargs,
|
|
):
|
|
_, _, _, h, gh = *x.shape, self.heads, self.global_heads
|
|
|
|
cross_attend = exists(context)
|
|
|
|
context = default(context, x)
|
|
context_mask = default(context_mask, mask) if not cross_attend else context_mask
|
|
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
|
|
|
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
|
|
(q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
|
|
|
|
attn_outs = []
|
|
if not empty(q):
|
|
if exists(context_mask):
|
|
global_mask = context_mask[:, None, :, None]
|
|
v.masked_fill_(~global_mask, 0.0)
|
|
if cross_attend:
|
|
pass
|
|
else:
|
|
out = self.fast_attention(q, k, v)
|
|
attn_outs.append(out)
|
|
|
|
if not empty(lq):
|
|
assert (
|
|
not cross_attend
|
|
), "local attention is not compatible with cross attention"
|
|
out = self.local_attn(lq, lk, lv, input_mask=mask)
|
|
attn_outs.append(out)
|
|
|
|
out = torch.cat(attn_outs, dim=1)
|
|
out = rearrange(out, "b h n d -> b n (h d)")
|
|
out = self.to_out(out)
|
|
return self.dropout(out)
|
|
|
|
|
|
def l2_regularization(model, l2_alpha):
|
|
l2_loss = []
|
|
for module in model.modules():
|
|
if type(module) is nn.Conv2d:
|
|
l2_loss.append((module.weight**2).sum() / 2.0)
|
|
return l2_alpha * sum(l2_loss)
|
|
|
|
|
|
class FCPE(nn.Module):
|
|
def __init__(
|
|
self,
|
|
input_channel=128,
|
|
out_dims=360,
|
|
n_layers=12,
|
|
n_chans=512,
|
|
use_siren=False,
|
|
use_full=False,
|
|
loss_mse_scale=10,
|
|
loss_l2_regularization=False,
|
|
loss_l2_regularization_scale=1,
|
|
loss_grad1_mse=False,
|
|
loss_grad1_mse_scale=1,
|
|
f0_max=1975.5,
|
|
f0_min=32.70,
|
|
confidence=False,
|
|
threshold=0.05,
|
|
use_input_conv=True,
|
|
):
|
|
super().__init__()
|
|
if use_siren is True:
|
|
raise ValueError("Siren is not supported yet.")
|
|
if use_full is True:
|
|
raise ValueError("Full model is not supported yet.")
|
|
|
|
self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
|
|
self.loss_l2_regularization = (
|
|
loss_l2_regularization if (loss_l2_regularization is not None) else False
|
|
)
|
|
self.loss_l2_regularization_scale = (
|
|
loss_l2_regularization_scale
|
|
if (loss_l2_regularization_scale is not None)
|
|
else 1
|
|
)
|
|
self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
|
|
self.loss_grad1_mse_scale = (
|
|
loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1
|
|
)
|
|
self.f0_max = f0_max if (f0_max is not None) else 1975.5
|
|
self.f0_min = f0_min if (f0_min is not None) else 32.70
|
|
self.confidence = confidence if (confidence is not None) else False
|
|
self.threshold = threshold if (threshold is not None) else 0.05
|
|
self.use_input_conv = use_input_conv if (use_input_conv is not None) else True
|
|
|
|
self.cent_table_b = torch.Tensor(
|
|
np.linspace(
|
|
self.f0_to_cent(torch.Tensor([f0_min]))[0],
|
|
self.f0_to_cent(torch.Tensor([f0_max]))[0],
|
|
out_dims,
|
|
)
|
|
)
|
|
self.register_buffer("cent_table", self.cent_table_b)
|
|
|
|
|
|
_leaky = nn.LeakyReLU()
|
|
self.stack = nn.Sequential(
|
|
nn.Conv1d(input_channel, n_chans, 3, 1, 1),
|
|
nn.GroupNorm(4, n_chans),
|
|
_leaky,
|
|
nn.Conv1d(n_chans, n_chans, 3, 1, 1),
|
|
)
|
|
|
|
|
|
self.decoder = PCmer(
|
|
num_layers=n_layers,
|
|
num_heads=8,
|
|
dim_model=n_chans,
|
|
dim_keys=n_chans,
|
|
dim_values=n_chans,
|
|
residual_dropout=0.1,
|
|
attention_dropout=0.1,
|
|
)
|
|
self.norm = nn.LayerNorm(n_chans)
|
|
|
|
|
|
self.n_out = out_dims
|
|
self.dense_out = weight_norm(nn.Linear(n_chans, self.n_out))
|
|
|
|
def forward(
|
|
self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder="local_argmax"
|
|
):
|
|
"""
|
|
input:
|
|
B x n_frames x n_unit
|
|
return:
|
|
dict of B x n_frames x feat
|
|
"""
|
|
if cdecoder == "argmax":
|
|
self.cdecoder = self.cents_decoder
|
|
elif cdecoder == "local_argmax":
|
|
self.cdecoder = self.cents_local_decoder
|
|
if self.use_input_conv:
|
|
x = self.stack(mel.transpose(1, 2)).transpose(1, 2)
|
|
else:
|
|
x = mel
|
|
x = self.decoder(x)
|
|
x = self.norm(x)
|
|
x = self.dense_out(x)
|
|
x = torch.sigmoid(x)
|
|
if not infer:
|
|
gt_cent_f0 = self.f0_to_cent(gt_f0)
|
|
gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0)
|
|
loss_all = self.loss_mse_scale * F.binary_cross_entropy(
|
|
x, gt_cent_f0
|
|
)
|
|
|
|
if self.loss_l2_regularization:
|
|
loss_all = loss_all + l2_regularization(
|
|
model=self, l2_alpha=self.loss_l2_regularization_scale
|
|
)
|
|
x = loss_all
|
|
if infer:
|
|
x = self.cdecoder(x)
|
|
x = self.cent_to_f0(x)
|
|
if not return_hz_f0:
|
|
x = (1 + x / 700).log()
|
|
return x
|
|
|
|
def cents_decoder(self, y, mask=True):
|
|
B, N, _ = y.size()
|
|
ci = self.cent_table[None, None, :].expand(B, N, -1)
|
|
rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(
|
|
y, dim=-1, keepdim=True
|
|
)
|
|
if mask:
|
|
confident = torch.max(y, dim=-1, keepdim=True)[0]
|
|
confident_mask = torch.ones_like(confident)
|
|
confident_mask[confident <= self.threshold] = float("-INF")
|
|
rtn = rtn * confident_mask
|
|
if self.confidence:
|
|
return rtn, confident
|
|
else:
|
|
return rtn
|
|
|
|
def cents_local_decoder(self, y, mask=True):
|
|
B, N, _ = y.size()
|
|
ci = self.cent_table[None, None, :].expand(B, N, -1)
|
|
confident, max_index = torch.max(y, dim=-1, keepdim=True)
|
|
local_argmax_index = torch.arange(0, 9).to(max_index.device) + (max_index - 4)
|
|
local_argmax_index[local_argmax_index < 0] = 0
|
|
local_argmax_index[local_argmax_index >= self.n_out] = self.n_out - 1
|
|
ci_l = torch.gather(ci, -1, local_argmax_index)
|
|
y_l = torch.gather(y, -1, local_argmax_index)
|
|
rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(
|
|
y_l, dim=-1, keepdim=True
|
|
)
|
|
if mask:
|
|
confident_mask = torch.ones_like(confident)
|
|
confident_mask[confident <= self.threshold] = float("-INF")
|
|
rtn = rtn * confident_mask
|
|
if self.confidence:
|
|
return rtn, confident
|
|
else:
|
|
return rtn
|
|
|
|
def cent_to_f0(self, cent):
|
|
return 10.0 * 2 ** (cent / 1200.0)
|
|
|
|
def f0_to_cent(self, f0):
|
|
return 1200.0 * torch.log2(f0 / 10.0)
|
|
|
|
def gaussian_blurred_cent(self, cents):
|
|
mask = (cents > 0.1) & (cents < (1200.0 * np.log2(self.f0_max / 10.0)))
|
|
B, N, _ = cents.size()
|
|
ci = self.cent_table[None, None, :].expand(B, N, -1)
|
|
return torch.exp(-torch.square(ci - cents) / 1250) * mask.float()
|
|
|
|
|
|
class FCPEInfer:
|
|
def __init__(self, model_path, device=None, dtype=torch.float32):
|
|
if device is None:
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
self.device = device
|
|
ckpt = torch.load(model_path, map_location=torch.device(self.device))
|
|
self.args = DotDict(ckpt["config"])
|
|
self.dtype = dtype
|
|
model = FCPE(
|
|
input_channel=self.args.model.input_channel,
|
|
out_dims=self.args.model.out_dims,
|
|
n_layers=self.args.model.n_layers,
|
|
n_chans=self.args.model.n_chans,
|
|
use_siren=self.args.model.use_siren,
|
|
use_full=self.args.model.use_full,
|
|
loss_mse_scale=self.args.loss.loss_mse_scale,
|
|
loss_l2_regularization=self.args.loss.loss_l2_regularization,
|
|
loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale,
|
|
loss_grad1_mse=self.args.loss.loss_grad1_mse,
|
|
loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale,
|
|
f0_max=self.args.model.f0_max,
|
|
f0_min=self.args.model.f0_min,
|
|
confidence=self.args.model.confidence,
|
|
)
|
|
model.to(self.device).to(self.dtype)
|
|
model.load_state_dict(ckpt["model"])
|
|
model.eval()
|
|
self.model = model
|
|
self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device)
|
|
|
|
@torch.no_grad()
|
|
def __call__(self, audio, sr, threshold=0.05):
|
|
self.model.threshold = threshold
|
|
audio = audio[None, :]
|
|
mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype)
|
|
f0 = self.model(mel=mel, infer=True, return_hz_f0=True)
|
|
return f0
|
|
|
|
|
|
class Wav2Mel:
|
|
|
|
def __init__(self, args, device=None, dtype=torch.float32):
|
|
|
|
self.sampling_rate = args.mel.sampling_rate
|
|
self.hop_size = args.mel.hop_size
|
|
if device is None:
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
self.device = device
|
|
self.dtype = dtype
|
|
self.stft = STFT(
|
|
args.mel.sampling_rate,
|
|
args.mel.num_mels,
|
|
args.mel.n_fft,
|
|
args.mel.win_size,
|
|
args.mel.hop_size,
|
|
args.mel.fmin,
|
|
args.mel.fmax,
|
|
)
|
|
self.resample_kernel = {}
|
|
|
|
def extract_nvstft(self, audio, keyshift=0, train=False):
|
|
mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(
|
|
1, 2
|
|
)
|
|
return mel
|
|
|
|
def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
|
|
audio = audio.to(self.dtype).to(self.device)
|
|
|
|
if sample_rate == self.sampling_rate:
|
|
audio_res = audio
|
|
else:
|
|
key_str = str(sample_rate)
|
|
if key_str not in self.resample_kernel:
|
|
self.resample_kernel[key_str] = Resample(
|
|
sample_rate, self.sampling_rate, lowpass_filter_width=128
|
|
)
|
|
self.resample_kernel[key_str] = (
|
|
self.resample_kernel[key_str].to(self.dtype).to(self.device)
|
|
)
|
|
audio_res = self.resample_kernel[key_str](audio)
|
|
|
|
|
|
mel = self.extract_nvstft(
|
|
audio_res, keyshift=keyshift, train=train
|
|
)
|
|
n_frames = int(audio.shape[1] // self.hop_size) + 1
|
|
if n_frames > int(mel.shape[1]):
|
|
mel = torch.cat((mel, mel[:, -1:, :]), 1)
|
|
if n_frames < int(mel.shape[1]):
|
|
mel = mel[:, :n_frames, :]
|
|
return mel
|
|
|
|
def __call__(self, audio, sample_rate, keyshift=0, train=False):
|
|
return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)
|
|
|
|
|
|
class DotDict(dict):
|
|
def __getattr__(*args):
|
|
val = dict.get(*args)
|
|
return DotDict(val) if type(val) is dict else val
|
|
|
|
__setattr__ = dict.__setitem__
|
|
__delattr__ = dict.__delitem__
|
|
|
|
|
|
class F0Predictor(object):
|
|
def compute_f0(self, wav, p_len):
|
|
"""
|
|
input: wav:[signal_length]
|
|
p_len:int
|
|
output: f0:[signal_length//hop_length]
|
|
"""
|
|
pass
|
|
|
|
def compute_f0_uv(self, wav, p_len):
|
|
"""
|
|
input: wav:[signal_length]
|
|
p_len:int
|
|
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
|
|
"""
|
|
pass
|
|
|
|
|
|
class FCPEF0Predictor(F0Predictor):
|
|
def __init__(
|
|
self,
|
|
model_path,
|
|
hop_length=512,
|
|
f0_min=50,
|
|
f0_max=1100,
|
|
dtype=torch.float32,
|
|
device=None,
|
|
sampling_rate=44100,
|
|
threshold=0.05,
|
|
):
|
|
self.fcpe = FCPEInfer(model_path, device=device, dtype=dtype)
|
|
self.hop_length = hop_length
|
|
self.f0_min = f0_min
|
|
self.f0_max = f0_max
|
|
if device is None:
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
else:
|
|
self.device = device
|
|
self.threshold = threshold
|
|
self.sampling_rate = sampling_rate
|
|
self.dtype = dtype
|
|
self.name = "fcpe"
|
|
|
|
def repeat_expand(
|
|
self,
|
|
content: Union[torch.Tensor, np.ndarray],
|
|
target_len: int,
|
|
mode: str = "nearest",
|
|
):
|
|
ndim = content.ndim
|
|
|
|
if content.ndim == 1:
|
|
content = content[None, None]
|
|
elif content.ndim == 2:
|
|
content = content[None]
|
|
|
|
assert content.ndim == 3
|
|
|
|
is_np = isinstance(content, np.ndarray)
|
|
if is_np:
|
|
content = torch.from_numpy(content)
|
|
|
|
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
|
|
|
|
if is_np:
|
|
results = results.numpy()
|
|
|
|
if ndim == 1:
|
|
return results[0, 0]
|
|
elif ndim == 2:
|
|
return results[0]
|
|
|
|
def post_process(self, x, sampling_rate, f0, pad_to):
|
|
if isinstance(f0, np.ndarray):
|
|
f0 = torch.from_numpy(f0).float().to(x.device)
|
|
|
|
if pad_to is None:
|
|
return f0
|
|
|
|
f0 = self.repeat_expand(f0, pad_to)
|
|
|
|
vuv_vector = torch.zeros_like(f0)
|
|
vuv_vector[f0 > 0.0] = 1.0
|
|
vuv_vector[f0 <= 0.0] = 0.0
|
|
|
|
|
|
nzindex = torch.nonzero(f0).squeeze()
|
|
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
|
|
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
|
|
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
|
|
|
|
vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]
|
|
|
|
if f0.shape[0] <= 0:
|
|
return (
|
|
torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(),
|
|
vuv_vector.cpu().numpy(),
|
|
)
|
|
if f0.shape[0] == 1:
|
|
return (
|
|
torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0]
|
|
).cpu().numpy(), vuv_vector.cpu().numpy()
|
|
|
|
|
|
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
|
|
|
|
|
|
return f0, vuv_vector.cpu().numpy()
|
|
|
|
def compute_f0(self, wav, p_len=None):
|
|
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
|
|
if p_len is None:
|
|
print("fcpe p_len is None")
|
|
p_len = x.shape[0] // self.hop_length
|
|
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0, :, 0]
|
|
if torch.all(f0 == 0):
|
|
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
|
|
return rtn, rtn
|
|
return self.post_process(x, self.sampling_rate, f0, p_len)[0]
|
|
|
|
def compute_f0_uv(self, wav, p_len=None):
|
|
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
|
|
if p_len is None:
|
|
p_len = x.shape[0] // self.hop_length
|
|
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0, :, 0]
|
|
if torch.all(f0 == 0):
|
|
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
|
|
return rtn, rtn
|
|
return self.post_process(x, self.sampling_rate, f0, p_len)
|
|
|