|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import librosa.display
|
|
import librosa
|
|
|
|
|
|
def calculate_features(y, sr):
|
|
stft = np.abs(librosa.stft(y))
|
|
duration = librosa.get_duration(y=y, sr=sr)
|
|
cent = librosa.feature.spectral_centroid(S=stft, sr=sr)[0]
|
|
bw = librosa.feature.spectral_bandwidth(S=stft, sr=sr)[0]
|
|
rolloff = librosa.feature.spectral_rolloff(S=stft, sr=sr)[0]
|
|
return stft, duration, cent, bw, rolloff
|
|
|
|
|
|
def plot_title(title):
|
|
plt.suptitle(title, fontsize=16, fontweight="bold")
|
|
|
|
|
|
def plot_spectrogram(y, sr, stft, duration, cmap="inferno"):
|
|
plt.subplot(3, 1, 1)
|
|
plt.imshow(
|
|
librosa.amplitude_to_db(stft, ref=np.max),
|
|
origin="lower",
|
|
extent=[0, duration, 0, sr / 1000],
|
|
aspect="auto",
|
|
cmap=cmap,
|
|
)
|
|
plt.colorbar(format="%+2.0f dB")
|
|
plt.xlabel("Time (s)")
|
|
plt.ylabel("Frequency (kHz)")
|
|
plt.title("Spectrogram")
|
|
|
|
|
|
def plot_waveform(y, sr, duration):
|
|
plt.subplot(3, 1, 2)
|
|
librosa.display.waveshow(y, sr=sr)
|
|
plt.xlabel("Time (s)")
|
|
plt.ylabel("Amplitude")
|
|
plt.title("Waveform")
|
|
|
|
|
|
def plot_features(times, cent, bw, rolloff, duration):
|
|
plt.subplot(3, 1, 3)
|
|
plt.plot(times, cent, label="Spectral Centroid (kHz)", color="b")
|
|
plt.plot(times, bw, label="Spectral Bandwidth (kHz)", color="g")
|
|
plt.plot(times, rolloff, label="Spectral Rolloff (kHz)", color="r")
|
|
plt.xlabel("Time (s)")
|
|
plt.title("Spectral Features")
|
|
plt.legend()
|
|
|
|
|
|
def analyze_audio(audio_file, save_plot_path="logs/audio_analysis.png"):
|
|
y, sr = librosa.load(audio_file)
|
|
stft, duration, cent, bw, rolloff = calculate_features(y, sr)
|
|
|
|
plt.figure(figsize=(12, 10))
|
|
|
|
plot_title("Audio Analysis" + " - " + audio_file.split("/")[-1])
|
|
plot_spectrogram(y, sr, stft, duration)
|
|
plot_waveform(y, sr, duration)
|
|
plot_features(librosa.times_like(cent), cent, bw, rolloff, duration)
|
|
|
|
plt.tight_layout()
|
|
|
|
if save_plot_path:
|
|
plt.savefig(save_plot_path, bbox_inches="tight", dpi=300)
|
|
plt.close()
|
|
|
|
audio_info = f"""Sample Rate: {sr}\nDuration: {(
|
|
str(round(duration, 2)) + " seconds"
|
|
if duration < 60
|
|
else str(round(duration / 60, 2)) + " minutes"
|
|
)}\nNumber of Samples: {len(y)}\nBits per Sample: {librosa.get_samplerate(audio_file)}\nChannels: {"Mono (1)" if y.ndim == 1 else "Stereo (2)"}"""
|
|
|
|
return audio_info, save_plot_path
|
|
|