|
import os, sys, shutil
|
|
import tempfile
|
|
import gradio as gr
|
|
import pandas as pd
|
|
import requests
|
|
import wget
|
|
from core import run_download_script
|
|
|
|
from assets.i18n.i18n import I18nAuto
|
|
|
|
from rvc.lib.utils import format_title
|
|
|
|
i18n = I18nAuto()
|
|
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
|
|
gradio_temp_dir = os.path.join(tempfile.gettempdir(), "gradio")
|
|
|
|
if os.path.exists(gradio_temp_dir):
|
|
shutil.rmtree(gradio_temp_dir)
|
|
|
|
|
|
def save_drop_model(dropbox):
|
|
if "pth" not in dropbox and "index" not in dropbox:
|
|
raise gr.Error(
|
|
message="The file you dropped is not a valid model file. Please try again."
|
|
)
|
|
else:
|
|
file_name = format_title(os.path.basename(dropbox))
|
|
if ".pth" in dropbox:
|
|
model_name = format_title(file_name.split(".pth")[0])
|
|
else:
|
|
if "v2" not in dropbox:
|
|
model_name = format_title(
|
|
file_name.split("_nprobe_1_")[1].split("_v1")[0]
|
|
)
|
|
else:
|
|
model_name = format_title(
|
|
file_name.split("_nprobe_1_")[1].split("_v2")[0]
|
|
)
|
|
model_path = os.path.join(now_dir, "logs", model_name)
|
|
if not os.path.exists(model_path):
|
|
os.makedirs(model_path)
|
|
if os.path.exists(os.path.join(model_path, file_name)):
|
|
os.remove(os.path.join(model_path, file_name))
|
|
shutil.move(dropbox, os.path.join(model_path, file_name))
|
|
print(f"{file_name} saved in {model_path}")
|
|
gr.Info(f"{file_name} saved in {model_path}")
|
|
return None
|
|
|
|
|
|
def search_models(name):
|
|
url = f"https://cjtfqzjfdimgpvpwhzlv.supabase.co/rest/v1/models?name=ilike.%25{name}%25&order=created_at.desc&limit=15"
|
|
headers = {
|
|
"apikey": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImNqdGZxempmZGltZ3B2cHdoemx2Iiwicm9sZSI6ImFub24iLCJpYXQiOjE2OTUxNjczODgsImV4cCI6MjAxMDc0MzM4OH0.7z5WMIbjR99c2Ooc0ma7B_FyGq10G8X-alkCYTkKR10"
|
|
}
|
|
response = requests.get(url, headers=headers)
|
|
data = response.json()
|
|
if len(data) == 0:
|
|
gr.Info(i18n("We couldn't find models by that name."))
|
|
return None
|
|
else:
|
|
df = pd.DataFrame(data)[["name", "link", "epochs", "type"]]
|
|
df["link"] = df["link"].apply(
|
|
lambda x: f'<a href="{x}" target="_blank">{x}</a>'
|
|
)
|
|
return df
|
|
|
|
|
|
json_url = "https://huggingface.co/IAHispano/Applio/raw/main/pretrains.json"
|
|
|
|
|
|
def fetch_pretrained_data():
|
|
response = requests.get(json_url)
|
|
response.raise_for_status()
|
|
return response.json()
|
|
|
|
|
|
def get_pretrained_list():
|
|
data = fetch_pretrained_data()
|
|
return list(data.keys())
|
|
|
|
|
|
def get_pretrained_sample_rates(model):
|
|
data = fetch_pretrained_data()
|
|
return list(data[model].keys())
|
|
|
|
|
|
def download_pretrained_model(model, sample_rate):
|
|
data = fetch_pretrained_data()
|
|
paths = data[model][sample_rate]
|
|
pretraineds_custom_path = os.path.join("rvc", "pretraineds", "pretraineds_custom")
|
|
os.makedirs(pretraineds_custom_path, exist_ok=True)
|
|
|
|
d_url = f"https://huggingface.co/{paths['D']}"
|
|
g_url = f"https://huggingface.co/{paths['G']}"
|
|
|
|
gr.Info("Downloading Pretrained Model...")
|
|
print("Downloading Pretrained Model...")
|
|
wget.download(d_url, out=pretraineds_custom_path)
|
|
wget.download(g_url, out=pretraineds_custom_path)
|
|
|
|
|
|
def update_sample_rate_dropdown(model):
|
|
return {
|
|
"choices": get_pretrained_sample_rates(model),
|
|
"value": get_pretrained_sample_rates(model)[0],
|
|
"__type__": "update",
|
|
}
|
|
|
|
|
|
def download_tab():
|
|
with gr.Column():
|
|
gr.Markdown(value=i18n("## Download Model"))
|
|
model_link = gr.Textbox(
|
|
label=i18n("Model Link"),
|
|
placeholder=i18n("Introduce the model link"),
|
|
interactive=True,
|
|
)
|
|
model_download_output_info = gr.Textbox(
|
|
label=i18n("Output Information"),
|
|
info=i18n("The output information will be displayed here."),
|
|
value="",
|
|
max_lines=8,
|
|
interactive=False,
|
|
)
|
|
model_download_button = gr.Button(i18n("Download Model"))
|
|
model_download_button.click(
|
|
fn=run_download_script,
|
|
inputs=[model_link],
|
|
outputs=[model_download_output_info],
|
|
api_name="model_download",
|
|
)
|
|
gr.Markdown(value=i18n("## Drop files"))
|
|
dropbox = gr.File(
|
|
label=i18n(
|
|
"Drag your .pth file and .index file into this space. Drag one and then the other."
|
|
),
|
|
type="filepath",
|
|
)
|
|
|
|
dropbox.upload(
|
|
fn=save_drop_model,
|
|
inputs=[dropbox],
|
|
outputs=[dropbox],
|
|
)
|
|
gr.Markdown(value=i18n("## Search Model"))
|
|
search_name = gr.Textbox(
|
|
label=i18n("Model Name"),
|
|
placeholder=i18n("Introduce the model name to search."),
|
|
interactive=True,
|
|
)
|
|
search_table = gr.Dataframe(datatype="markdown")
|
|
search = gr.Button(i18n("Search"))
|
|
search.click(
|
|
fn=search_models,
|
|
inputs=[search_name],
|
|
outputs=[search_table],
|
|
)
|
|
search_name.submit(search_models, [search_name], search_table)
|
|
gr.Markdown(value=i18n("## Download Pretrained Models"))
|
|
pretrained_model = gr.Dropdown(
|
|
label=i18n("Pretrained"),
|
|
info=i18n("Select the pretrained model you want to download."),
|
|
choices=get_pretrained_list(),
|
|
value="Titan",
|
|
interactive=True,
|
|
)
|
|
pretrained_sample_rate = gr.Dropdown(
|
|
label=i18n("Sampling Rate"),
|
|
info=i18n("And select the sampling rate."),
|
|
choices=get_pretrained_sample_rates(pretrained_model.value),
|
|
value="40k",
|
|
interactive=True,
|
|
allow_custom_value=True,
|
|
)
|
|
pretrained_model.change(
|
|
update_sample_rate_dropdown,
|
|
inputs=[pretrained_model],
|
|
outputs=[pretrained_sample_rate],
|
|
)
|
|
download_pretrained = gr.Button(i18n("Download"))
|
|
download_pretrained.click(
|
|
fn=download_pretrained_model,
|
|
inputs=[pretrained_model, pretrained_sample_rate],
|
|
outputs=[],
|
|
)
|
|
|