|
import random |
|
import torch |
|
from torch import nn |
|
from model.stylegan.model import ConvLayer, PixelNorm, EqualLinear, Generator |
|
|
|
class AdaptiveInstanceNorm(nn.Module): |
|
def __init__(self, fin, style_dim=512): |
|
super().__init__() |
|
|
|
self.norm = nn.InstanceNorm2d(fin, affine=False) |
|
self.style = nn.Linear(style_dim, fin * 2) |
|
|
|
self.style.bias.data[:fin] = 1 |
|
self.style.bias.data[fin:] = 0 |
|
|
|
def forward(self, input, style): |
|
style = self.style(style).unsqueeze(2).unsqueeze(3) |
|
gamma, beta = style.chunk(2, 1) |
|
out = self.norm(input) |
|
out = gamma * out + beta |
|
return out |
|
|
|
|
|
class AdaResBlock(nn.Module): |
|
def __init__(self, fin, style_dim=512, dilation=1): |
|
super().__init__() |
|
|
|
self.conv = ConvLayer(fin, fin, 3, dilation=dilation) |
|
self.conv2 = ConvLayer(fin, fin, 3, dilation=dilation) |
|
self.norm = AdaptiveInstanceNorm(fin, style_dim) |
|
self.norm2 = AdaptiveInstanceNorm(fin, style_dim) |
|
|
|
|
|
|
|
self.conv[0].weight.data *= 0.01 |
|
self.conv2[0].weight.data *= 0.01 |
|
|
|
def forward(self, x, s, w=1): |
|
skip = x |
|
if w == 0: |
|
return skip |
|
out = self.conv(self.norm(x, s)) |
|
out = self.conv2(self.norm2(out, s)) |
|
out = out * w + skip |
|
return out |
|
|
|
class DualStyleGAN(nn.Module): |
|
def __init__(self, size, style_dim, n_mlp, channel_multiplier=2, twoRes=True, res_index=6): |
|
super().__init__() |
|
|
|
layers = [PixelNorm()] |
|
for i in range(n_mlp-6): |
|
layers.append(EqualLinear(512, 512, lr_mul=0.01, activation="fused_lrelu")) |
|
|
|
self.style = nn.Sequential(*layers) |
|
|
|
self.generator = Generator(size, style_dim, n_mlp, channel_multiplier) |
|
|
|
self.res = nn.ModuleList() |
|
self.res_index = res_index//2 * 2 |
|
self.res.append(AdaResBlock(self.generator.channels[2 ** 2])) |
|
for i in range(3, self.generator.log_size + 1): |
|
out_channel = self.generator.channels[2 ** i] |
|
if i < 3 + self.res_index//2: |
|
|
|
self.res.append(AdaResBlock(out_channel)) |
|
self.res.append(AdaResBlock(out_channel)) |
|
else: |
|
|
|
self.res.append(EqualLinear(512, 512)) |
|
|
|
self.res[-1].weight.data = torch.eye(512) * 512.0**0.5 + torch.randn(512, 512) * 0.01 |
|
self.res.append(EqualLinear(512, 512)) |
|
self.res[-1].weight.data = torch.eye(512) * 512.0**0.5 + torch.randn(512, 512) * 0.01 |
|
self.res.append(EqualLinear(512, 512)) |
|
self.res[-1].weight.data = torch.eye(512) * 512.0**0.5 + torch.randn(512, 512) * 0.01 |
|
self.size = self.generator.size |
|
self.style_dim = self.generator.style_dim |
|
self.log_size = self.generator.log_size |
|
self.num_layers = self.generator.num_layers |
|
self.n_latent = self.generator.n_latent |
|
self.channels = self.generator.channels |
|
|
|
def forward( |
|
self, |
|
styles, |
|
exstyles, |
|
return_latents=False, |
|
return_feat=False, |
|
inject_index=None, |
|
truncation=1, |
|
truncation_latent=None, |
|
input_is_latent=False, |
|
noise=None, |
|
randomize_noise=True, |
|
z_plus_latent=False, |
|
use_res=True, |
|
fuse_index=18, |
|
interp_weights=[1]*18, |
|
): |
|
|
|
if not input_is_latent: |
|
if not z_plus_latent: |
|
styles = [self.generator.style(s) for s in styles] |
|
else: |
|
styles = [self.generator.style(s.reshape(s.shape[0]*s.shape[1], s.shape[2])).reshape(s.shape) for s in styles] |
|
|
|
if noise is None: |
|
if randomize_noise: |
|
noise = [None] * self.generator.num_layers |
|
else: |
|
noise = [ |
|
getattr(self.generator.noises, f"noise_{i}") for i in range(self.generator.num_layers) |
|
] |
|
|
|
if truncation < 1: |
|
style_t = [] |
|
|
|
for style in styles: |
|
style_t.append( |
|
truncation_latent + truncation * (style - truncation_latent) |
|
) |
|
|
|
styles = style_t |
|
|
|
if len(styles) < 2: |
|
inject_index = self.generator.n_latent |
|
|
|
if styles[0].ndim < 3: |
|
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) |
|
|
|
else: |
|
latent = styles[0] |
|
|
|
else: |
|
if inject_index is None: |
|
inject_index = random.randint(1, self.generator.n_latent - 1) |
|
|
|
if styles[0].ndim < 3: |
|
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) |
|
latent2 = styles[1].unsqueeze(1).repeat(1, self.generator.n_latent - inject_index, 1) |
|
|
|
latent = torch.cat([latent, latent2], 1) |
|
else: |
|
latent = torch.cat([styles[0][:,0:inject_index], styles[1][:,inject_index:]], 1) |
|
|
|
if use_res: |
|
if exstyles.ndim < 3: |
|
resstyles = self.style(exstyles).unsqueeze(1).repeat(1, self.generator.n_latent, 1) |
|
adastyles = exstyles.unsqueeze(1).repeat(1, self.generator.n_latent, 1) |
|
else: |
|
nB, nL, nD = exstyles.shape |
|
resstyles = self.style(exstyles.reshape(nB*nL, nD)).reshape(nB, nL, nD) |
|
adastyles = exstyles |
|
|
|
out = self.generator.input(latent) |
|
out = self.generator.conv1(out, latent[:, 0], noise=noise[0]) |
|
if use_res and fuse_index > 0: |
|
out = self.res[0](out, resstyles[:, 0], interp_weights[0]) |
|
|
|
skip = self.generator.to_rgb1(out, latent[:, 1]) |
|
i = 1 |
|
for conv1, conv2, noise1, noise2, to_rgb in zip( |
|
self.generator.convs[::2], self.generator.convs[1::2], noise[1::2], noise[2::2], self.generator.to_rgbs): |
|
if use_res and fuse_index >= i and i > self.res_index: |
|
out = conv1(out, interp_weights[i] * self.res[i](adastyles[:, i]) + |
|
(1-interp_weights[i]) * latent[:, i], noise=noise1) |
|
else: |
|
out = conv1(out, latent[:, i], noise=noise1) |
|
if use_res and fuse_index >= i and i <= self.res_index: |
|
out = self.res[i](out, resstyles[:, i], interp_weights[i]) |
|
if use_res and fuse_index >= (i+1) and i > self.res_index: |
|
out = conv2(out, interp_weights[i+1] * self.res[i+1](adastyles[:, i+1]) + |
|
(1-interp_weights[i+1]) * latent[:, i+1], noise=noise2) |
|
else: |
|
out = conv2(out, latent[:, i + 1], noise=noise2) |
|
if use_res and fuse_index >= (i+1) and i <= self.res_index: |
|
out = self.res[i+1](out, resstyles[:, i+1], interp_weights[i+1]) |
|
if use_res and fuse_index >= (i+2) and i >= self.res_index-1: |
|
skip = to_rgb(out, interp_weights[i+2] * self.res[i+2](adastyles[:, i+2]) + |
|
(1-interp_weights[i+2]) * latent[:, i + 2], skip) |
|
else: |
|
skip = to_rgb(out, latent[:, i + 2], skip) |
|
i += 2 |
|
if i > self.res_index and return_feat: |
|
return out, skip |
|
|
|
image = skip |
|
|
|
if return_latents: |
|
return image, latent |
|
|
|
else: |
|
return image, None |
|
|
|
def make_noise(self): |
|
return self.generator.make_noise() |
|
|
|
def mean_latent(self, n_latent): |
|
return self.generator.mean_latent(n_latent) |
|
|
|
def get_latent(self, input): |
|
return self.generator.style(input) |