|
import os |
|
|
|
import argparse |
|
import numpy as np |
|
import cv2 |
|
import dlib |
|
import torch |
|
from torchvision import transforms |
|
import torch.nn.functional as F |
|
from tqdm import tqdm |
|
from model.vtoonify import VToonify |
|
from model.bisenet.model import BiSeNet |
|
from model.encoder.align_all_parallel import align_face |
|
from util import save_image, load_image, visualize, load_psp_standalone, get_video_crop_parameter, tensor2cv2 |
|
|
|
|
|
class TestOptions(): |
|
def __init__(self): |
|
|
|
self.parser = argparse.ArgumentParser(description="Style Transfer") |
|
self.parser.add_argument("--content", type=str, default='./data/077436.jpg', help="path of the content image/video") |
|
self.parser.add_argument("--style_id", type=int, default=26, help="the id of the style image") |
|
self.parser.add_argument("--style_degree", type=float, default=0.5, help="style degree for VToonify-D") |
|
self.parser.add_argument("--color_transfer", action="store_true", help="transfer the color of the style") |
|
self.parser.add_argument("--ckpt", type=str, default='./checkpoint/vtoonify_d_cartoon/vtoonify_s_d.pt', help="path of the saved model") |
|
self.parser.add_argument("--output_path", type=str, default='./output/', help="path of the output images") |
|
self.parser.add_argument("--scale_image", action="store_true", help="resize and crop the image to best fit the model") |
|
self.parser.add_argument("--style_encoder_path", type=str, default='./checkpoint/encoder.pt', help="path of the style encoder") |
|
self.parser.add_argument("--exstyle_path", type=str, default=None, help="path of the extrinsic style code") |
|
self.parser.add_argument("--faceparsing_path", type=str, default='./checkpoint/faceparsing.pth', help="path of the face parsing model") |
|
self.parser.add_argument("--video", action="store_true", help="if true, video stylization; if false, image stylization") |
|
self.parser.add_argument("--cpu", action="store_true", help="if true, only use cpu") |
|
self.parser.add_argument("--backbone", type=str, default='dualstylegan', help="dualstylegan | toonify") |
|
self.parser.add_argument("--padding", type=int, nargs=4, default=[200,200,200,200], help="left, right, top, bottom paddings to the face center") |
|
self.parser.add_argument("--batch_size", type=int, default=4, help="batch size of frames when processing video") |
|
self.parser.add_argument("--parsing_map_path", type=str, default=None, help="path of the refined parsing map of the target video") |
|
|
|
def parse(self): |
|
self.opt = self.parser.parse_args() |
|
if self.opt.exstyle_path is None: |
|
self.opt.exstyle_path = os.path.join(os.path.dirname(self.opt.ckpt), 'exstyle_code.npy') |
|
args = vars(self.opt) |
|
print('Load options') |
|
for name, value in sorted(args.items()): |
|
print('%s: %s' % (str(name), str(value))) |
|
return self.opt |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = TestOptions() |
|
args = parser.parse() |
|
print('*'*98) |
|
|
|
|
|
device = "cpu" if args.cpu else "cuda" |
|
|
|
transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]), |
|
]) |
|
|
|
vtoonify = VToonify(backbone = args.backbone) |
|
vtoonify.load_state_dict(torch.load(args.ckpt, map_location=lambda storage, loc: storage)['g_ema']) |
|
vtoonify.to(device) |
|
|
|
parsingpredictor = BiSeNet(n_classes=19) |
|
parsingpredictor.load_state_dict(torch.load(args.faceparsing_path, map_location=lambda storage, loc: storage)) |
|
parsingpredictor.to(device).eval() |
|
|
|
modelname = './checkpoint/shape_predictor_68_face_landmarks.dat' |
|
if not os.path.exists(modelname): |
|
import wget, bz2 |
|
wget.download('http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2', modelname+'.bz2') |
|
zipfile = bz2.BZ2File(modelname+'.bz2') |
|
data = zipfile.read() |
|
open(modelname, 'wb').write(data) |
|
landmarkpredictor = dlib.shape_predictor(modelname) |
|
|
|
pspencoder = load_psp_standalone(args.style_encoder_path, device) |
|
|
|
if args.backbone == 'dualstylegan': |
|
exstyles = np.load(args.exstyle_path, allow_pickle='TRUE').item() |
|
stylename = list(exstyles.keys())[args.style_id] |
|
exstyle = torch.tensor(exstyles[stylename]).to(device) |
|
with torch.no_grad(): |
|
exstyle = vtoonify.zplus2wplus(exstyle) |
|
|
|
if args.video and args.parsing_map_path is not None: |
|
x_p_hat = torch.tensor(np.load(args.parsing_map_path)) |
|
|
|
print('Load models successfully!') |
|
|
|
|
|
filename = args.content |
|
basename = os.path.basename(filename).split('.')[0] |
|
scale = 1 |
|
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]]) |
|
print('Processing ' + os.path.basename(filename) + ' with vtoonify_' + args.backbone[0]) |
|
if args.video: |
|
cropname = os.path.join(args.output_path, basename + '_input.mp4') |
|
savename = os.path.join(args.output_path, basename + '_vtoonify_' + args.backbone[0] + '.mp4') |
|
|
|
video_cap = cv2.VideoCapture(filename) |
|
num = int(video_cap.get(7)) |
|
|
|
first_valid_frame = True |
|
batch_frames = [] |
|
for i in tqdm(range(num)): |
|
success, frame = video_cap.read() |
|
if success == False: |
|
assert('load video frames error') |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
|
|
|
|
if first_valid_frame: |
|
if args.scale_image: |
|
paras = get_video_crop_parameter(frame, landmarkpredictor, args.padding) |
|
if paras is None: |
|
continue |
|
h,w,top,bottom,left,right,scale = paras |
|
H, W = int(bottom-top), int(right-left) |
|
|
|
|
|
if scale <= 0.75: |
|
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) |
|
if scale <= 0.375: |
|
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) |
|
frame = cv2.resize(frame, (w, h))[top:bottom, left:right] |
|
else: |
|
H, W = frame.shape[0], frame.shape[1] |
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
videoWriter = cv2.VideoWriter(cropname, fourcc, video_cap.get(5), (W, H)) |
|
videoWriter2 = cv2.VideoWriter(savename, fourcc, video_cap.get(5), (4*W, 4*H)) |
|
|
|
|
|
|
|
with torch.no_grad(): |
|
I = align_face(frame, landmarkpredictor) |
|
I = transform(I).unsqueeze(dim=0).to(device) |
|
s_w = pspencoder(I) |
|
s_w = vtoonify.zplus2wplus(s_w) |
|
if vtoonify.backbone == 'dualstylegan': |
|
if args.color_transfer: |
|
s_w = exstyle |
|
else: |
|
s_w[:,:7] = exstyle[:,:7] |
|
first_valid_frame = False |
|
elif args.scale_image: |
|
if scale <= 0.75: |
|
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) |
|
if scale <= 0.375: |
|
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) |
|
frame = cv2.resize(frame, (w, h))[top:bottom, left:right] |
|
|
|
videoWriter.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)) |
|
|
|
batch_frames += [transform(frame).unsqueeze(dim=0).to(device)] |
|
|
|
if len(batch_frames) == args.batch_size or (i+1) == num: |
|
x = torch.cat(batch_frames, dim=0) |
|
batch_frames = [] |
|
with torch.no_grad(): |
|
|
|
|
|
if args.video and args.parsing_map_path is not None: |
|
x_p = x_p_hat[i+1-x.size(0):i+1].to(device) |
|
else: |
|
x_p = F.interpolate(parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0], |
|
scale_factor=0.5, recompute_scale_factor=False).detach() |
|
|
|
inputs = torch.cat((x, x_p/16.), dim=1) |
|
|
|
y_tilde = vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = args.style_degree) |
|
y_tilde = torch.clamp(y_tilde, -1, 1) |
|
for k in range(y_tilde.size(0)): |
|
videoWriter2.write(tensor2cv2(y_tilde[k].cpu())) |
|
|
|
videoWriter.release() |
|
videoWriter2.release() |
|
video_cap.release() |
|
|
|
|
|
else: |
|
cropname = os.path.join(args.output_path, basename + '_input.jpg') |
|
savename = os.path.join(args.output_path, basename + '_vtoonify_' + args.backbone[0] + '.jpg') |
|
|
|
frame = cv2.imread(filename) |
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) |
|
|
|
|
|
|
|
if args.scale_image: |
|
paras = get_video_crop_parameter(frame, landmarkpredictor, args.padding) |
|
if paras is not None: |
|
h,w,top,bottom,left,right,scale = paras |
|
H, W = int(bottom-top), int(right-left) |
|
|
|
if scale <= 0.75: |
|
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) |
|
if scale <= 0.375: |
|
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) |
|
frame = cv2.resize(frame, (w, h))[top:bottom, left:right] |
|
|
|
with torch.no_grad(): |
|
I = align_face(frame, landmarkpredictor) |
|
I = transform(I).unsqueeze(dim=0).to(device) |
|
s_w = pspencoder(I) |
|
s_w = vtoonify.zplus2wplus(s_w) |
|
if vtoonify.backbone == 'dualstylegan': |
|
if args.color_transfer: |
|
s_w = exstyle |
|
else: |
|
s_w[:,:7] = exstyle[:,:7] |
|
|
|
x = transform(frame).unsqueeze(dim=0).to(device) |
|
|
|
|
|
x_p = F.interpolate(parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0], |
|
scale_factor=0.5, recompute_scale_factor=False).detach() |
|
|
|
inputs = torch.cat((x, x_p/16.), dim=1) |
|
|
|
y_tilde = vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = args.style_degree) |
|
y_tilde = torch.clamp(y_tilde, -1, 1) |
|
|
|
cv2.imwrite(cropname, cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)) |
|
save_image(y_tilde[0].cpu(), savename) |
|
|
|
print('Transfer style successfully!') |